LIGHT UNFLAVORED MESONS
($\mathit S$ = $\mathit C$ = $\mathit B$ = 0)
For $\mathit I = 1$ (${{\mathit \pi}}$, ${{\mathit b}}$, ${{\mathit \rho}}$, ${{\mathit a}}$): ${\mathit {\mathit u}}$ ${\mathit {\overline{\mathit d}}}$, (${\mathit {\mathit u}}$ ${\mathit {\overline{\mathit u}}}−{\mathit {\mathit d}}$ ${\mathit {\overline{\mathit d}}})/\sqrt {2 }$, ${\mathit {\mathit d}}$ ${\mathit {\overline{\mathit u}}}$;
for $\mathit I = 0$ (${{\mathit \eta}}$, ${{\mathit \eta}^{\,'}}$, ${{\mathit h}}$, ${{\mathit h}^{\,'}}$, ${{\mathit \omega}}$, ${{\mathit \phi}}$, ${{\mathit f}}$, ${{\mathit f}^{\,'}}$): ${\mathit {\mathit c}}_{{\mathrm {1}}}({{\mathit u}}{{\overline{\mathit u}}}$ $+$ ${{\mathit d}}{{\overline{\mathit d}}}$) $+$ ${\mathit {\mathit c}}_{{\mathrm {2}}}({{\mathit s}}{{\overline{\mathit s}}}$)
INSPIRE   JSON PDGID:
M264

${{\mathit f}_{{{0}}}{(1770)}}$

$I^G(J^{PC})$ = $0^+(0^{+ +})$ 
See the review on "Spectroscopy of Light Meson Resonances."
${{\mathit f}_{{{0}}}{(1770)}}$ Breit-Wigner MASS   $1784 {}^{+16}_{-14}$ MeV (S = 1.1)
 
${{\mathit f}_{{{0}}}{(1770)}}$ Breit-Wigner WIDTH   $161 \pm21$ MeV (S = 1.4)
 
$\Gamma_{1}$ ${{\mathit \pi}}{{\mathit \pi}}$   seen 882
 
$\Gamma_{2}$ ${{\mathit K}}{{\overline{\mathit K}}}$   seen 743
 
$\Gamma_{3}$ ${{\mathit \eta}}{{\mathit \eta}}$   seen 704
 
$\Gamma_{4}$ ${{\mathit \omega}}{{\mathit \phi}}$   seen -1
 
FOOTNOTES