LEPTONS INSPIRE   JSON PDGID:
S003

${{\mathit e}}$

$J$ = $1/2$ 
Expand/Collapse All
${{\mathit e}}$ MASS (atomic mass units u) ($5.48579909065$ $\pm0.00000000016$) $ \times 10^{-4}$ u 
 
${{\mathit e}}$ MASS [1] $0.51099895000$ $\pm0.00000000015$ MeV 
 
$({\mathit m}_{{{\mathit e}^{+}}}-{\mathit m}_{{{\mathit e}^{-}}})/{\mathit m}_{\mathrm {average}}$ $<8$ $\times 10^{-9}$   CL=90%
 
$\vert \mathit q_{{{\mathit e}^{+}}}~+~\mathit q_{{{\mathit e}^{-}}}\vert /{{\mathit e}}$ $<4$ $\times 10^{-8}$  
 
▸  ${{\mathit e}}$ MAGNETIC MOMENT ANOMALY
(${\mathit g}_{{{\mathit e}^{+}}}-{\mathit g}_{{{\mathit e}^{-}}}$) / $\mathit g_{{\mathrm {average}}}$ ($-0.5$ $\pm2.1$) $ \times 10^{-12}$  
 
${{\mathit e}}$ ELECTRIC DIPOLE MOMENT (d) $< 4.1$ $\times 10^{-30}$ $\mathit e~$cm  CL=90%
 
▸  ${{\mathit e}^{-}}$ MEAN LIFE / BRANCHING FRACTION
▸  LIMITS ON LEPTON-FLAVOR VIOLATION IN PRODUCTION
[1] The uncertainty in the electron mass in unified atomic mass units (u) is ten times smaller than that given by the 1986 CODATA adjustment, quoted in the Table of Physical Constants (Section$~$1). The conversion to MeV via the factor $931.49432$(28) MeV/u is more uncertain because of the electron charge uncertainty. Our value in MeV differs slightly from the 1986 CODATA result.
[2] This is the best limit for the mode ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \nu}}{{\mathit \gamma}}$.