▸ Expand all sections
▾ Collapse all sections
|
Mean life $\tau $
|
$(8.954 \pm0.004) \times 10^{-11}$ s (S = 1.1)
|
|
$\lambda _{+}$ (LINEAR ENERGY DEPENDENCE OF $\mathit f_{+}$ IN ${{\mathit K}_{{e3}}^{0}}$ DECAY)
|
$0.034 \pm0.004$
|
|
${{\mathit A}_{{S}}}$ = [ $\Gamma\mathrm {( {{\mathit K}_S^0} \rightarrow {{\mathit \pi}^{-}} {{\mathit e}^{+}} {{\mathit \nu}_{{e}}} )} - \Gamma\mathrm {( {{\mathit K}_S^0} \rightarrow {{\mathit \pi}^{+}} {{\mathit e}^{-}} {{\overline{\mathit \nu}}_{{e}}} )}$ ] $/$ SUM
|
$-0.004 \pm0.006$
|
|
Im($\eta _{+−0}){}^{2}$ = $\Gamma\mathrm {( {{\mathit K}_S^0} \rightarrow {{\mathit \pi}^{+}} {{\mathit \pi}^{-}} {{\mathit \pi}^{0}} , \mathit CP-violating)}$ $/$ $\Gamma\mathrm {( {{\mathit K}_L^0} \rightarrow {{\mathit \pi}^{+}} {{\mathit \pi}^{-}} {{\mathit \pi}^{0}} )}$
|
|
Im($\eta _{+−0}$) = Im(A( ${{\mathit K}_S^0}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ , $\mathit CP$-violating) $/$ A( ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ ))
|
$-0.002 \pm0.009$
|
|
Im($\eta _{000}$) = Im($\mathit A$( ${{\mathit K}_S^0}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$ )/$\mathit A$( ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$ ))
|
$-0.001 \pm0.016$
|
|
$\vert \eta _{000}\vert $ = $\vert \mathit A$( ${{\mathit K}_S^0}$ $\rightarrow$ 3 ${{\mathit \pi}^{0}}$ )/$\mathit A$( ${{\mathit K}_L^0}$ $\rightarrow$ 3 ${{\mathit \pi}^{0}}$ )$\vert $
|
$<0.0088$ CL=90.0%
|
|
$\mathit CP$ asymmetry $\mathit A$ in ${{\mathit K}_S^0}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit e}^{+}}{{\mathit e}^{-}}$
|
$-0.004 \pm0.008$
|
|