CHARMED BARYONS($\mathit C$ = $+1$) ${{\mathit \Lambda}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$ ,${{\mathit \Xi}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Xi}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Omega}_{{c}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$

#### ${{\mathit \Lambda}_{{c}}^{+}}$

$I(J^P)$ = $0(1/2^{+})$
The parity of the ${{\mathit \Lambda}_{{c}}^{+}}$ is defined to be positive (as are the parities of the proton, neutron, and ${{\mathit \Lambda}}$). The quark content is ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ . Results of an analysis of ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ decays (JEZABEK 1992 ) are consistent with $\mathit J = 1/2$. ABLIKIM 2021N determines the ${{\mathit \Lambda}_{{c}}^{+}}$ spin to be $\mathit J = 1/2$, from an angular analysis of various 2-body ${{\mathit \Lambda}_{{c}}^{+}}$ decays in ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\overline{\mathit \Lambda}}_{{c}}^{-}}$ . We have omitted some results that have been superseded by later experiments. The omitted results may be found in earlier editions.
 ${{\mathit \Lambda}_{{c}}^{+}}$ MASS $2286.46 \pm0.14$ MeV
 ${{\mathit \Lambda}_{{c}}^{+}}$ MEAN LIFE $(2.015 \pm0.027) \times 10^{-13}$ s (S = 1.6)
Branching fractions marked with a footnote, e.g. [$\mathit a$], have been corrected for decay modes not observed in the experiments. For example, the submode fraction ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$ seen in ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ has been multiplied up to include ${{\overline{\mathit K}}^{*}{(892)}^{0}}$ $\rightarrow$ ${{\overline{\mathit K}}^{0}}{{\mathit \pi}^{0}}$ decays.
 FOOTNOTES