BOTTOM BARYONS
($\mathit B$ = $-1$)
${{\mathit \Lambda}_{{{b}}}^{0}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit b}}$, ${{\mathit \Sigma}_{{{b}}}^{0}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit b}}$, ${{\mathit \Sigma}_{{{b}}}^{+}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit b}}$, ${{\mathit \Sigma}_{{{b}}}^{-}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit b}}$
${{\mathit \Xi}_{{{b}}}^{0}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit b}}$, ${{\mathit \Xi}_{{{b}}}^{-}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit b}}$, ${{\mathit \Omega}_{{{b}}}^{-}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit b}}$
INSPIRE   JSON PDGID:
S040

${{\mathit \Lambda}_{{{b}}}^{0}}$

$I(J^P)$ = $0(1/2^{+})$ 
In the quark model, a ${{\mathit \Lambda}_{{{b}}}^{0}}$ is an isospin-0 ${{\mathit u}}{{\mathit d}}{{\mathit b}}$ state. The lowest ${{\mathit \Lambda}_{{{b}}}^{0}}$ ought to have $\mathit J{}^{P} = 1/2{}^{+}$. None of $\mathit I$, $\mathit J$, or $\mathit P$ have actually been measured.
Expand/Collapse All
▸  ${{\mathit \Lambda}_{{{b}}}^{0}}$ MASS
${{\mathit \Lambda}_{{{b}}}^{0}}$ MEAN LIFE ($1.468$ $\pm0.009$) $ \times 10^{-12}$ s 
 
${\mathit \tau}_{{{\mathit \Lambda}_{{{b}}}^{0}}}/{\mathit \tau}_{{{\overline{\mathit \Lambda}}_{{{b}}}^{0}}}$ $0.94$ $\pm0.04$  
 
▸  ${\mathit \tau}_{{{\mathit \Lambda}_{{{b}}}^{0}}}/{\mathit \tau}_{{{\mathit B}^{0}}}$ MEAN LIFE RATIO
▸  PARTIAL BRANCHING FRACTIONS
▸  $\mathit CP$ VIOLATION
▸  $\mathit CP$ AND $\mathit T$ VIOLATION PARAMETERS
▸  $\mathit P$ VIOLATION PARAMETERS
▸  ${{\mathit \Lambda}_{{{b}}}^{0}}$ DECAY PARAMETERS
▸  FORWARD-BACKWARD ASYMMETRIES
▸  ${{\mathit \Lambda}_{{{b}}}^{0}}$ ${{\overline{\mathit \Lambda}}_{{{b}}}^{0}}$ Production Asymmetry
The branching fractions B(${{\mathit b}}$ -baryon $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$ anything) and B(${{\mathit \Lambda}_{{{b}}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$ anything) are not pure measurements because the underlying measured products of these with B(${{\mathit b}}$ $\rightarrow$ ${{\mathit b}}$ -baryon) were used to determine B(${{\mathit b}}$ $\rightarrow$ ${{\mathit b}}$ -baryon), as described in the note ``Production and Decay of ${{\mathit b}}$-Flavored Hadrons.''
For inclusive branching fractions, $\mathit e.g.,$ ${{\mathit \Lambda}_{{{b}}}}$ $\rightarrow$ ${{\overline{\mathit \Lambda}}_{{{c}}}}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.
Mode  
Fraction ($\Gamma_i$ / $\Gamma$) Scale Factor/
Conf. Level
P(MeV/c)  
$\Gamma_{1}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \Lambda}}{\times }$ B(${{\mathit b}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{b}}}^{0}}$) ($5.8$ $\pm0.8$) $ \times 10^{-5}$ 1740
 
$\Gamma_{2}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \Lambda}}$ 1740
 
$\Gamma_{3}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \Lambda}}{{\mathit \phi}}$ 1010
 
$\Gamma_{4}$ ${{\mathit \psi}{(2S)}}{{\mathit \Lambda}}$ 1298
 
$\Gamma_{5}$ ${{\mathit p}}{{\mathit D}^{0}}{{\mathit \pi}^{-}}$ ($6.3$ $\pm0.6$) $ \times 10^{-4}$ 2370
 
$\Gamma_{6}$ ${{\mathit p}}{{\mathit D}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$ ($2.8$ $\pm0.4$) $ \times 10^{-4}$ 2332
 
$\Gamma_{7}$ ${{\mathit p}}{{\mathit D}^{*}{(2010)}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$ ($5.3$ $\pm1.0$) $ \times 10^{-4}$ 2277
 
$\Gamma_{8}$ ${{\mathit \Lambda}_{{{c}}}{(2860)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit p}}$  
 
$\Gamma_{9}$ ${{\mathit \Lambda}_{{{c}}}{(2880)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit p}}$  
 
$\Gamma_{10}$ ${{\mathit \Lambda}_{{{c}}}{(2940)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit p}}$  
 
$\Gamma_{11}$ ${{\mathit p}}{{\mathit D}^{0}}{{\mathit K}^{-}}$ ($4.6$ $\pm0.8$) $ \times 10^{-5}$ 2269
 
$\Gamma_{12}$ ${{\mathit p}}{{\mathit D}}{{\mathit K}^{-}}$ , ${{\mathit D}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$  
 
$\Gamma_{13}$ ${{\mathit p}}{{\mathit D}}{{\mathit K}^{-}}$ , ${{\mathit D}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$  
 
$\Gamma_{14}$ ${{\mathit p}}{{\mathit J / \psi}}{{\mathit \pi}^{-}}$ ($2.6^{+0.5}_{-0.4}$) $ \times 10^{-5}$ 1755
 
$\Gamma_{15}$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit J / \psi}}$ , ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($1.6$ $\pm0.8$) $ \times 10^{-6}$  
 
$\Gamma_{16}$ ${{\mathit p}}{{\mathit J / \psi}}{{\mathit K}^{-}}$ ($3.2^{+0.6}_{-0.5}$) $ \times 10^{-4}$ 1589
 
$\Gamma_{17}$ ${{\mathit J / \psi}}{{\mathit \Xi}^{-}}{{\mathit K}^{+}}$ 1329
 
$\Gamma_{18}$ ${{\mathit p}}{{\mathit \eta}_{{{c}}}{(1S)}}{{\mathit K}^{-}}$ ($1.06$ $\pm0.26$) $ \times 10^{-4}$ 1670
 
$\Gamma_{19}$ ${{\mathit P}_{{{c {{\overline{\mathit c}}}}}}{(4312)}^{+}}{{\mathit K}^{-}}$ , ${{\mathit P}_{{{c {{\overline{\mathit c}}}}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \eta}_{{{c}}}{(1S)}}$ $<2.5$ $\times 10^{-5}$ CL=95%  
 
$\Gamma_{20}$ ${{\mathit P}_{{{c {{\overline{\mathit c}}}}}}{(4380)}^{+}}{{\mathit K}^{-}}$ , ${{\mathit P}_{{{c {{\overline{\mathit c}}}}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit J / \psi}}$ [1] ($2.7$ $\pm1.4$) $ \times 10^{-5}$  
 
$\Gamma_{21}$ ${{\mathit P}_{{{c}}}{(4450)}^{+}}{{\mathit K}^{-}}$ , ${{\mathit P}_{{{c}}}}$ $\rightarrow$ ${{\mathit p}}{{\mathit J / \psi}}$ [1] ($1.3$ $\pm0.4$) $ \times 10^{-5}$  
 
$\Gamma_{22}$ ${{\mathit \chi}_{{{c1}}}{(1P)}}{{\mathit p}}{{\mathit K}^{-}}$ ($7.6^{+1.5}_{-1.3}$) $ \times 10^{-5}$ 1242
 
$\Gamma_{23}$ ${{\mathit \chi}_{{{c1}}}{(1P)}}{{\mathit p}}{{\mathit \pi}^{-}}$ ($5.0^{+1.3}_{-1.1}$) $ \times 10^{-6}$ 1462
 
$\Gamma_{24}$ ${{\mathit \chi}_{{{c2}}}{(1P)}}{{\mathit p}}{{\mathit K}^{-}}$ ($7.7^{+1.6}_{-1.4}$) $ \times 10^{-5}$ 1198
 
$\Gamma_{25}$ ${{\mathit \chi}_{{{c2}}}{(1P)}}{{\mathit p}}{{\mathit \pi}^{-}}$ ($4.8$ $\pm1.9$) $ \times 10^{-6}$ 1427
 
$\Gamma_{26}$ ${{\mathit p}}{{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit K}^{-}}$ ($6.6^{+1.3}_{-1.1}$) $ \times 10^{-5}$ 1410
 
$\Gamma_{27}$ ${{\mathit p}}{{\mathit \psi}{(2S)}}{{\mathit K}^{-}}$ ($6.6^{+1.2}_{-1.0}$) $ \times 10^{-5}$ 1063
 
$\Gamma_{28}$ ${{\mathit \chi}_{{{c1}}}{(3872)}}{{\mathit p}}{{\mathit K}^{-}}$ ($2.8$ $\pm1.2$) $ \times 10^{-5}$ 837
 
$\Gamma_{29}$ ${{\mathit \chi}_{{{c1}}}{(3872)}}{{\mathit \Lambda}{(1520)}}$ ($1.6$ $\pm0.8$) $ \times 10^{-5}$ 721
 
$\Gamma_{30}$ ${{\mathit \psi}{(2S)}}{{\mathit p}}{{\mathit \pi}^{-}}$ ($7.5^{+1.6}_{-1.4}$) $ \times 10^{-6}$ 1320
 
$\Gamma_{31}$ ${{\mathit p}}{{\overline{\mathit K}}^{0}}{{\mathit \pi}^{-}}$ ($1.3$ $\pm0.4$) $ \times 10^{-5}$ 2693
 
$\Gamma_{32}$ ${{\mathit p}}{{\mathit K}^{0}}{{\mathit K}^{-}}$ $<3.5$ $\times 10^{-6}$ CL=90% 2639
 
$\Gamma_{33}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{-}}$ ($4.9$ $\pm0.4$) $ \times 10^{-3}$ S=1.2  2342
 
$\Gamma_{34}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit K}^{-}}$ ($3.56$ $\pm0.28$) $ \times 10^{-4}$ S=1.2  2314
 
$\Gamma_{35}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit a}_{{{1}}}{(1260)}^{-}}$ seen 2153
 
$\Gamma_{36}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit D}^{-}}$ ($4.6$ $\pm0.6$) $ \times 10^{-4}$ 1886
 
$\Gamma_{37}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit D}_{{{s}}}^{-}}$ ($1.10$ $\pm0.10$ ) $\%$ 1833
 
$\Gamma_{38}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit D}_{{{s}}}^{*-}}$ ($1.83$ $\pm0.18$ ) $\%$ 1748
 
$\Gamma_{39}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}$ ($2.13$ $\pm0.20$) $ \times 10^{-3}$ 1581
 
$\Gamma_{40}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\overline{\mathit D}}^{*0}}{{\mathit K}^{-}}$ ($6.6$ $\pm0.7$) $ \times 10^{-3}$ 1471
 
$\Gamma_{41}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$ ($7.6$ $\pm1.1$) $ \times 10^{-3}$ S=1.1  2323
 
$\Gamma_{42}$ ${{\mathit \Lambda}_{{{c}}}{(2595)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{{c}}}{(2595)}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($3.4$ $\pm1.4$) $ \times 10^{-4}$ 2210
 
$\Gamma_{43}$ ${{\mathit \Lambda}_{{{c}}}{(2625)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{{c}}}{(2625)}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($3.3$ $\pm1.3$) $ \times 10^{-4}$ 2193
 
$\Gamma_{44}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Sigma}_{{{c}}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{-}}$ ($5.7$ $\pm2.2$) $ \times 10^{-4}$ 2265
 
$\Gamma_{45}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{++}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$ , ${{\mathit \Sigma}_{{{c}}}^{++}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}$ ($3.2$ $\pm1.5$) $ \times 10^{-4}$ 2265
 
$\Gamma_{46}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{++}}{{\mathit D}^{-}}{{\mathit K}^{-}}$ ($6.0$ $\pm0.8$) $ \times 10^{-4}$ 1448
 
$\Gamma_{47}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{++}}{{\mathit D}^{*-}}{{\mathit K}^{-}}$ ($1.36$ $\pm0.22$) $ \times 10^{-3}$ 1324
 
$\Gamma_{48}$ ${{\mathit \Sigma}_{{{c}}}{(2520)}^{++}}{{\mathit D}^{-}}{{\mathit K}^{-}}$ ($2.8$ $\pm0.5$) $ \times 10^{-4}$ 1392
 
$\Gamma_{49}$ ${{\mathit \Sigma}_{{{c}}}{(2520)}^{++}}{{\mathit D}^{*-}}{{\mathit K}^{-}}$ ($5.4$ $\pm1.1$) $ \times 10^{-4}$ 1262
 
$\Gamma_{50}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{-}}$ ($1.02$ $\pm0.11$) $ \times 10^{-3}$ 2184
 
$\Gamma_{51}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit p}}{{\overline{\mathit p}}}{{\mathit \pi}^{-}}$ ($2.63$ $\pm0.27$) $ \times 10^{-4}$ 1805
 
$\Gamma_{52}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{0}}{{\mathit p}}{{\overline{\mathit p}}}$ , ${{\mathit \Sigma}_{{{c}}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{-}}$ ($2.3$ $\pm0.5$) $ \times 10^{-5}$  
 
$\Gamma_{53}$ ${{\mathit \Sigma}_{{{c}}}{(2520)}^{0}}{{\mathit p}}{{\overline{\mathit p}}}$ , ${{\mathit \Sigma}_{{{c}}}{(2520)}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{-}}$ ($3.1$ $\pm0.7$) $ \times 10^{-5}$  
 
$\Gamma_{54}$ ${{\mathit \Lambda}}{{\mathit K}^{0}}$2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}$ 2591
 
$\Gamma_{55}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$ anything [2] ($10.9$ $\pm2.2$ ) $\%$  
 
$\Gamma_{56}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$ ($6.2^{+1.4}_{-1.3}$ ) $\%$ 2345
 
$\Gamma_{57}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \tau}^{-}}{{\overline{\mathit \nu}}_{{{\tau}}}}$ ($1.9$ $\pm0.5$ ) $\%$ 1933
 
$\Gamma_{58}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$ ($5.6$ $\pm3.1$ ) $\%$ 2335
 
$\Gamma_{59}$ ${{\mathit \Lambda}_{{{c}}}{(2595)}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$ ($7.9^{+4.0}_{-3.5}$) $ \times 10^{-3}$ 2212
 
$\Gamma_{60}$ ${{\mathit \Lambda}_{{{c}}}{(2625)}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$ ($1.3^{+0.6}_{-0.5}$ ) $\%$ 2195
 
$\Gamma_{61}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{0}}{{\mathit \pi}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$ 2272
 
$\Gamma_{62}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{++}}{{\mathit \pi}^{-}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$ 2272
 
$\Gamma_{63}$ ${{\mathit p}}{{\mathit h}^{-}}$ [3] $<2.3$ $\times 10^{-5}$ CL=90% 2730
 
$\Gamma_{64}$ ${{\mathit p}}{{\mathit \pi}^{-}}$ ($4.6$ $\pm0.8$) $ \times 10^{-6}$ 2730
 
$\Gamma_{65}$ ${{\mathit p}}{{\mathit K}^{-}}$ ($5.5$ $\pm1.0$) $ \times 10^{-6}$ 2709
 
$\Gamma_{66}$ ${{\mathit p}}{{\mathit D}_{{{s}}}^{-}}$ ($1.25$ $\pm0.13$) $ \times 10^{-5}$ 2364
 
$\Gamma_{67}$ ${{\mathit p}}{{\mathit \mu}^{-}}{{\overline{\mathit \nu}}_{{{\mu}}}}$ ($4.1$ $\pm1.0$) $ \times 10^{-4}$ 2730
 
$\Gamma_{68}$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($1.08$ $\pm0.28$) $ \times 10^{-6}$ 2695
 
$\Gamma_{69}$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($6.9$ $\pm2.5$) $ \times 10^{-8}$ 2720
 
$\Gamma_{70}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit e}^{+}}{{\mathit e}^{-}}$ ($3.1$ $\pm0.6$) $ \times 10^{-7}$ 2708
 
$\Gamma_{71}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($2.6^{+0.5}_{-0.4}$) $ \times 10^{-7}$ 2685
 
$\Gamma_{72}$ ${{\mathit \Lambda}{(1520)}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$  
 
$\Gamma_{73}$ ${{\mathit \Lambda}}{{\mathit \gamma}}$ ($7.1$ $\pm1.7$) $ \times 10^{-6}$ 2699
 
$\Gamma_{74}$ ${{\overline{\mathit p}}}{{\mathit K}^{-}}{{\mathit \gamma}}$ 2709
 
$\Gamma_{75}$ ${{\mathit \Lambda}{(1405)}^{0}}{{\mathit \gamma}}$  
 
$\Gamma_{76}$ ${{\mathit \Lambda}{(1520)}^{0}}{{\mathit \gamma}}$  
 
$\Gamma_{77}$ ${{\mathit \Lambda}{(1600)}^{0}}{{\mathit \gamma}}$  
 
$\Gamma_{78}$ ${{\mathit \Lambda}{(1670)}^{0}}{{\mathit \gamma}}$  
 
$\Gamma_{79}$ ${{\mathit \Lambda}{(1690)}^{0}}{{\mathit \gamma}}$  
 
$\Gamma_{80}$ ${{\mathit \Lambda}{(1800)}^{0}}{{\mathit \gamma}}$  
 
$\Gamma_{81}$ ${{\mathit \Lambda}{(1810)}^{0}}{{\mathit \gamma}}$  
 
$\Gamma_{82}$ ${{\mathit \Lambda}{(1820)}^{0}}{{\mathit \gamma}}$  
 
$\Gamma_{83}$ ${{\mathit \Lambda}{(1830)}^{0}}{{\mathit \gamma}}$  
 
$\Gamma_{84}$ ${{\mathit \Lambda}{(1890)}^{0}}{{\mathit \gamma}}$  
 
$\Gamma_{85}$ ${{\mathit \Lambda}{(2100)}^{0}}{{\mathit \gamma}}$  
 
$\Gamma_{86}$ ${{\mathit \Lambda}{(2110)}^{0}}{{\mathit \gamma}}$  
 
$\Gamma_{87}$ ${{\mathit \Lambda}{(2530)}^{0}}{{\mathit \gamma}}$  
 
$\Gamma_{88}$ (${{\overline{\mathit p}}}{{\mathit K}^{-}}$ ) nonresonant ${{\mathit \gamma}}$ 2709
 
$\Gamma_{89}$ ${{\mathit \Lambda}}{{\mathit \eta}}$ ($9^{+7}_{-5}$) $ \times 10^{-6}$ 2670
 
$\Gamma_{90}$ ${{\mathit \Lambda}}{{\mathit \eta}^{\,'}{(958)}}$ $<3.1$ $\times 10^{-6}$ CL=90% 2610
 
$\Gamma_{91}$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($4.6$ $\pm1.9$) $ \times 10^{-6}$ 2692
 
$\Gamma_{92}$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ ($5.7$ $\pm1.2$) $ \times 10^{-6}$ 2660
 
$\Gamma_{93}$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($1.61$ $\pm0.22$) $ \times 10^{-5}$ 2605
 
$\Gamma_{94}$ ${{\mathit \Lambda}}{{\mathit D}^{+}}{{\mathit D}^{-}}$ ($1.24$ $\pm0.35$) $ \times 10^{-4}$ 1387
 
$\Gamma_{95}$ ${{\mathit \Lambda}}{{\mathit \phi}}$ ($9.8$ $\pm2.6$) $ \times 10^{-6}$ 2599
 
$\Gamma_{96}$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($2.12$ $\pm0.21$) $ \times 10^{-5}$ 2715
 
$\Gamma_{97}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ ($4.1$ $\pm0.6$) $ \times 10^{-6}$ 2612
 
$\Gamma_{98}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($5.1$ $\pm0.5$) $ \times 10^{-5}$ 2675
 
$\Gamma_{99}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($1.27$ $\pm0.13$) $ \times 10^{-5}$ 2524
 
[1] ${{\mathit P}_{{{c}}}^{+}}$ is a pentaquark-charmonium state.
[2] Not a pure measurement. See note at head of ${{\mathit \Lambda}_{{{b}}}^{0}}$ Decay Modes.
[3] Here ${{\mathit h}^{-}}$ means ${{\mathit \pi}^{-}}$ or ${{\mathit K}^{-}}$.
Constrained Fit information