BOTTOM BARYONS($\mathit B$ = $-1$) ${{\mathit \Lambda}_{{b}}^{0}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit b}}$ , ${{\mathit \Xi}_{{b}}^{0}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit b}}$ , ${{\mathit \Xi}_{{b}}^{-}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit b}}$ , ${{\mathit \Omega}_{{b}}^{-}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit b}}$ INSPIRE search

#### ${{\mathit \Lambda}_{{b}}^{0}}$

$I(J^P)$ = $0(1/2^{+})$
In the quark model, a ${{\mathit \Lambda}_{{b}}^{0}}$ is an isospin-0 ${{\mathit u}}{{\mathit d}}{{\mathit b}}$ state. The lowest ${{\mathit \Lambda}_{{b}}^{0}}$ ought to have $\mathit J{}^{P} = 1/2{}^{+}$. None of $\mathit I$, $\mathit J$, or $\mathit P$ have actually been measured.
${\mathit \tau}_{{{\mathit \Lambda}_{{b}}^{0}}}/{\mathit \tau}_{{{\mathit B}^{0}}}$ MEAN LIFE RATIO
 ${\mathit \tau}_{{{\mathit \Lambda}_{{b}}^{0}}}/{\mathit \tau}_{{{\mathit B}^{0}}}$ (direct measurements) $0.964 \pm0.007$
${{\mathit \Lambda}_{{b}}^{0}}$ ${{\overline{\mathit \Lambda}}_{{b}}^{0}}$ Production Asymmetry
 ${{\mathit A}}_{P}({{\mathit \Lambda}_{{b}}^{0}}$) $0.014 \pm0.004$  (S = 1.8)
The branching fractions B( ${{\mathit b}}$ -baryon $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ anything) and B( ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ anything) are not pure measurements because the underlying measured products of these with B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit b}}$ -baryon) were used to determine B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit b}}$ -baryon), as described in the note “Production and Decay of ${{\mathit b}}$-Flavored Hadrons.”
For inclusive branching fractions, $\mathit e.g.,$ ${{\mathit \Lambda}_{{b}}}$ $\rightarrow$ ${{\overline{\mathit \Lambda}}_{{c}}}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.
 $\Gamma_{1}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \Lambda}}{\times }$ B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit \Lambda}_{{b}}^{0}}$ ) $(5.8\pm{0.8})\times 10^{-5}$ 1740
 $\Gamma_{2}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \Lambda}}$ 1740
 $\Gamma_{3}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \Lambda}}{{\mathit \phi}}$ 1010
 $\Gamma_{4}$ ${{\mathit \psi}{(2S)}}{{\mathit \Lambda}}$ 1298
 $\Gamma_{5}$ ${{\mathit p}}{{\mathit D}^{0}}{{\mathit \pi}^{-}}$ $(6.3\pm{0.6})\times 10^{-4}$ 2370
 $\Gamma_{6}$ ${{\mathit \Lambda}_{{c}}{(2860)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit p}}$
 $\Gamma_{7}$ ${{\mathit \Lambda}_{{c}}{(2880)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit p}}$
 $\Gamma_{8}$ ${{\mathit \Lambda}_{{c}}{(2940)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit p}}$
 $\Gamma_{9}$ ${{\mathit p}}{{\mathit D}^{0}}{{\mathit K}^{-}}$ $(4.6\pm{0.8})\times 10^{-5}$ 2269
 $\Gamma_{10}$ ${{\mathit p}}{{\mathit D}}{{\mathit K}^{-}}$ , ${{\mathit D}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$
 $\Gamma_{11}$ ${{\mathit p}}{{\mathit D}}{{\mathit K}^{-}}$ , ${{\mathit D}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$
 $\Gamma_{12}$ ${{\mathit p}}{{\mathit J / \psi}}{{\mathit \pi}^{-}}$ $(2.6^{+0.5}_{-0.4})\times 10^{-5}$ 1755
 $\Gamma_{13}$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit J / \psi}}$ , ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ $(1.6\pm{0.8})\times 10^{-6}$
 $\Gamma_{14}$ ${{\mathit p}}{{\mathit J / \psi}}{{\mathit K}^{-}}$ $(3.2^{+0.6}_{-0.5})\times 10^{-4}$ 1589
 $\Gamma_{15}$ ${{\mathit p}}{{\mathit \eta}_{{c}}{(1S)}}{{\mathit K}^{-}}$ $(1.06\pm{0.26})\times 10^{-4}$ 1670
 $\Gamma_{16}$ ${{\mathit P}_{{c}}{(4312)}^{+}}{{\mathit K}^{-}}$ , ${{\mathit P}_{{c}}{(4312)}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \eta}_{{c}}{(1S)}}$ $<2.5\times 10^{-5}$ CL=95%
 $\Gamma_{17}$ ${{\mathit P}_{{c}}{(4380)}^{+}}{{\mathit K}^{-}}$ , ${{\mathit P}_{{c}}}$ $\rightarrow$ ${{\mathit p}}{{\mathit J / \psi}}$  $(2.7\pm{1.4})\times 10^{-5}$
 $\Gamma_{18}$ ${{\mathit P}_{{c}}{(4450)}^{+}}{{\mathit K}^{-}}$ , ${{\mathit P}_{{c}}}$ $\rightarrow$ ${{\mathit p}}{{\mathit J / \psi}}$  $(1.3\pm{0.4})\times 10^{-5}$
 $\Gamma_{19}$ ${{\mathit \chi}_{{c1}}{(1P)}}{{\mathit p}}{{\mathit K}^{-}}$ $(7.6^{+1.5}_{-1.3})\times 10^{-5}$ 1242
 $\Gamma_{20}$ ${{\mathit \chi}_{{c1}}{(1P)}}{{\mathit p}}{{\mathit \pi}^{-}}$ $(5.0^{+1.3}_{-1.1})\times 10^{-6}$ 1462
 $\Gamma_{21}$ ${{\mathit \chi}_{{c2}}{(1P)}}{{\mathit p}}{{\mathit K}^{-}}$ $(7.9^{+1.6}_{-1.4})\times 10^{-5}$ 1198
 $\Gamma_{22}$ ${{\mathit \chi}_{{c2}}{(1P)}}{{\mathit p}}{{\mathit \pi}^{-}}$ $(4.8\pm{1.9})\times 10^{-6}$ 1427
 $\Gamma_{23}$ ${{\mathit p}}{{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit K}^{-}}$ $(6.6^{+1.3}_{-1.1})\times 10^{-5}$ 1410
 $\Gamma_{24}$ ${{\mathit p}}{{\mathit \psi}{(2S)}}{{\mathit K}^{-}}$ $(6.6^{+1.2}_{-1.0})\times 10^{-5}$ 1063
 $\Gamma_{25}$ ${{\mathit \chi}_{{c1}}{(3872)}}{{\mathit p}}{{\mathit K}^{-}}$ $(3.2\pm{1.4})\times 10^{-5}$ 837
 $\Gamma_{26}$ ${{\mathit \chi}_{{c1}}{(3872)}}{{\mathit \Lambda}{(1520)}}$ $(1.9\pm{0.9})\times 10^{-5}$ 721
 $\Gamma_{27}$ ${{\mathit \psi}{(2S)}}{{\mathit p}}{{\mathit \pi}^{-}}$ $(7.5^{+1.6}_{-1.4})\times 10^{-6}$ 1320
 $\Gamma_{28}$ ${{\mathit p}}{{\overline{\mathit K}}^{0}}{{\mathit \pi}^{-}}$ $(1.3\pm{0.4})\times 10^{-5}$ 2693
 $\Gamma_{29}$ ${{\mathit p}}{{\mathit K}^{0}}{{\mathit K}^{-}}$ $<3.5\times 10^{-6}$ CL=90% 2639
 $\Gamma_{30}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{-}}$ $(4.9\pm{0.4})\times 10^{-3}$ S=1.2 2342
 $\Gamma_{31}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit K}^{-}}$ $(3.56\pm{0.28})\times 10^{-4}$ S=1.2 2314
 $\Gamma_{32}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit a}_{{1}}{(1260)}^{-}}$ seen 2153
 $\Gamma_{33}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit D}^{-}}$ $(4.6\pm{0.6})\times 10^{-4}$ 1886
 $\Gamma_{34}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit D}_{{s}}^{-}}$ $(1.10\pm{0.10})\%$ 1833
 $\Gamma_{35}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$ $(7.6\pm{1.1})\times 10^{-3}$ S=1.1 2323
 $\Gamma_{36}$ ${{\mathit \Lambda}_{{c}}{(2595)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{c}}{(2595)}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(3.4\pm{1.4})\times 10^{-4}$ 2210
 $\Gamma_{37}$ ${{\mathit \Lambda}_{{c}}{(2625)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{c}}{(2625)}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(3.3\pm{1.3})\times 10^{-4}$ 2193
 $\Gamma_{38}$ ${{\mathit \Sigma}_{{c}}{(2455)}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Sigma}_{{c}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{-}}$ $(5.7\pm{2.2})\times 10^{-4}$ 2265
 $\Gamma_{39}$ ${{\mathit \Sigma}_{{c}}{(2455)}^{++}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$ , ${{\mathit \Sigma}_{{c}}^{++}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}$ $(3.2\pm{1.5})\times 10^{-4}$ 2265
 $\Gamma_{40}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{-}}$ $(1.02\pm{0.11})\times 10^{-3}$ 2184
 $\Gamma_{41}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit p}}{{\overline{\mathit p}}}{{\mathit \pi}^{-}}$ $(2.63\pm{0.27})\times 10^{-4}$ 1805
 $\Gamma_{42}$ ${{\mathit \Sigma}_{{c}}{(2455)}^{0}}{{\mathit p}}{{\overline{\mathit p}}}$ , ${{\mathit \Sigma}_{{c}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{-}}$ $(2.3\pm{0.5})\times 10^{-5}$
 $\Gamma_{43}$ ${{\mathit \Sigma}_{{c}}{(2520)}^{0}}{{\mathit p}}{{\overline{\mathit p}}}$ , ${{\mathit \Sigma}_{{c}}{(2520)}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{-}}$ $(3.1\pm{0.7})\times 10^{-5}$
 $\Gamma_{44}$ ${{\mathit \Lambda}}{{\mathit K}^{0}}$2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}$ 2591
 $\Gamma_{45}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ anything  $(10.9\pm{2.2})\%$
 $\Gamma_{46}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ $(6.2^{+1.4}_{-1.3})\%$ 2345
 $\Gamma_{47}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ $(5.6\pm{3.1})\%$ 2335
 $\Gamma_{48}$ ${{\mathit \Lambda}_{{c}}{(2595)}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ $(7.9^{+4.0}_{-3.5})\times 10^{-3}$ 2212
 $\Gamma_{49}$ ${{\mathit \Lambda}_{{c}}{(2625)}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ $(1.3^{+0.6}_{-0.5})\%$ 2195
 $\Gamma_{50}$ ${{\mathit \Sigma}_{{c}}{(2455)}^{0}}{{\mathit \pi}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ 2272
 $\Gamma_{51}$ ${{\mathit \Sigma}_{{c}}{(2455)}^{++}}{{\mathit \pi}^{-}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ 2272
 $\Gamma_{52}$ ${{\mathit p}}{{\mathit h}^{-}}$  $<2.3\times 10^{-5}$ CL=90% 2730
 $\Gamma_{53}$ ${{\mathit p}}{{\mathit \pi}^{-}}$ $(4.5\pm{0.8})\times 10^{-6}$ 2730
 $\Gamma_{54}$ ${{\mathit p}}{{\mathit K}^{-}}$ $(5.4\pm{1.0})\times 10^{-6}$ 2709
 $\Gamma_{55}$ ${{\mathit p}}{{\mathit D}_{{s}}^{-}}$ $<4.8\times 10^{-4}$ CL=90% 2364
 $\Gamma_{56}$ ${{\mathit p}}{{\mathit \mu}^{-}}{{\overline{\mathit \nu}}_{{\mu}}}$ $(4.1\pm{1.0})\times 10^{-4}$ 2730
 $\Gamma_{57}$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ $(1.08\pm{0.28})\times 10^{-6}$ 2695
 $\Gamma_{58}$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ $(6.9\pm{2.5})\times 10^{-8}$ 2720
 $\Gamma_{59}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit e}^{+}}{{\mathit e}^{-}}$ $(3.1\pm{0.6})\times 10^{-7}$ 2708
 $\Gamma_{60}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ $(2.6^{+0.5}_{-0.4})\times 10^{-7}$ 2685
 $\Gamma_{61}$ ${{\mathit \Lambda}}{{\mathit \gamma}}$ $(7.1\pm{1.7})\times 10^{-6}$ 2699
 $\Gamma_{62}$ ${{\mathit \Lambda}}{{\mathit \eta}}$ $(9^{+7}_{-5})\times 10^{-6}$ 2670
 $\Gamma_{63}$ ${{\mathit \Lambda}}{{\mathit \eta}^{\,'}{(958)}}$ $<3.1\times 10^{-6}$ CL=90% 2611
 $\Gamma_{64}$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(4.6\pm{1.9})\times 10^{-6}$ 2692
 $\Gamma_{65}$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ $(5.6\pm{1.2})\times 10^{-6}$ 2660
 $\Gamma_{66}$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ $(1.60\pm{0.22})\times 10^{-5}$ 2605
 $\Gamma_{67}$ ${{\mathit \Lambda}}{{\mathit \phi}}$ $(9.8\pm{2.6})\times 10^{-6}$ 2599
 $\Gamma_{68}$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(2.10\pm{0.22})\times 10^{-5}$ 2715
 $\Gamma_{69}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ $(4.0\pm{0.6})\times 10^{-6}$ 2612
 $\Gamma_{70}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $(5.0\pm{0.5})\times 10^{-5}$ 2675
 $\Gamma_{71}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ $(1.26\pm{0.13})\times 10^{-5}$ 2524
 FOOTNOTES