BOTTOM BARYONS
($\mathit B$ = $-1$)
${{\mathit \Lambda}_{{{b}}}^{0}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit b}}$, ${{\mathit \Sigma}_{{{b}}}^{0}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit b}}$, ${{\mathit \Sigma}_{{{b}}}^{+}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit b}}$, ${{\mathit \Sigma}_{{{b}}}^{-}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit b}}$
${{\mathit \Xi}_{{{b}}}^{0}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit b}}$, ${{\mathit \Xi}_{{{b}}}^{-}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit b}}$, ${{\mathit \Omega}_{{{b}}}^{-}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit b}}$
INSPIRE   JSON PDGID:
S040

${{\mathit \Lambda}_{{{b}}}^{0}}$

$I(J^P)$ = $0(1/2^{+})$ 
In the quark model, a ${{\mathit \Lambda}_{{{b}}}^{0}}$ is an isospin-0 ${{\mathit u}}{{\mathit d}}{{\mathit b}}$ state. The lowest ${{\mathit \Lambda}_{{{b}}}^{0}}$ ought to have $\mathit J{}^{P} = 1/2{}^{+}$. None of $\mathit I$, $\mathit J$, or $\mathit P$ have actually been measured.
${\mathit \tau}_{{{\mathit \Lambda}_{{{b}}}^{0}}}/{\mathit \tau}_{{{\mathit B}^{0}}}$ MEAN LIFE RATIO
${\mathit \tau}_{{{\mathit \Lambda}_{{{b}}}^{0}}}/{\mathit \tau}_{{{\mathit B}^{0}}}$ (direct measurements)   $0.964 \pm0.007$  
 
${{\mathit \Lambda}_{{{b}}}^{0}}$ ${{\overline{\mathit \Lambda}}_{{{b}}}^{0}}$ Production Asymmetry
${{\mathit A}}_{P}({{\mathit \Lambda}_{{{b}}}^{0}}$)   $0.014 \pm0.004$  (S = 1.8)
 
The branching fractions B( ${{\mathit b}}$ -baryon $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$ anything) and B( ${{\mathit \Lambda}_{{{b}}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$ anything) are not pure measurements because the underlying measured products of these with B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit b}}$ -baryon) were used to determine B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit b}}$ -baryon), as described in the note ``Production and Decay of ${{\mathit b}}$-Flavored Hadrons.''
For inclusive branching fractions, $\mathit e.g.,$ ${{\mathit \Lambda}_{{{b}}}}$ $\rightarrow$ ${{\overline{\mathit \Lambda}}_{{{c}}}}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.
$\Gamma_{1}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \Lambda}}{\times }$ B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{b}}}^{0}}$)   $(5.8\pm{0.8})\times 10^{-5}$ 1740
 
$\Gamma_{2}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \Lambda}}$   1740
 
$\Gamma_{3}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \Lambda}}{{\mathit \phi}}$   1010
 
$\Gamma_{4}$ ${{\mathit \psi}{(2S)}}{{\mathit \Lambda}}$   1298
 
$\Gamma_{5}$ ${{\mathit p}}{{\mathit D}^{0}}{{\mathit \pi}^{-}}$   $(6.2\pm{0.6})\times 10^{-4}$ 2370
 
$\Gamma_{6}$ ${{\mathit p}}{{\mathit D}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$   $(2.7\pm{0.4})\times 10^{-4}$ 2332
 
$\Gamma_{7}$ ${{\mathit p}}{{\mathit D}^{*}{(2010)}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$   $(5.2\pm{1.0})\times 10^{-4}$ 2277
 
$\Gamma_{8}$ ${{\mathit \Lambda}_{{{c}}}{(2860)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit p}}$    
 
$\Gamma_{9}$ ${{\mathit \Lambda}_{{{c}}}{(2880)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit p}}$    
 
$\Gamma_{10}$ ${{\mathit \Lambda}_{{{c}}}{(2940)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit D}^{0}}{{\mathit p}}$    
 
$\Gamma_{11}$ ${{\mathit p}}{{\mathit D}^{0}}{{\mathit K}^{-}}$   $(4.5\pm{0.8})\times 10^{-5}$ 2269
 
$\Gamma_{12}$ ${{\mathit p}}{{\mathit D}}{{\mathit K}^{-}}$ , ${{\mathit D}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$    
 
$\Gamma_{13}$ ${{\mathit p}}{{\mathit D}}{{\mathit K}^{-}}$ , ${{\mathit D}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$    
 
$\Gamma_{14}$ ${{\mathit p}}{{\mathit J / \psi}}{{\mathit \pi}^{-}}$   $(2.6^{+0.5}_{-0.4})\times 10^{-5}$ 1755
 
$\Gamma_{15}$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit J / \psi}}$ , ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$   $(1.6\pm{0.8})\times 10^{-6}$  
 
$\Gamma_{16}$ ${{\mathit p}}{{\mathit J / \psi}}{{\mathit K}^{-}}$   $(3.2^{+0.6}_{-0.5})\times 10^{-4}$ 1589
 
$\Gamma_{17}$ ${{\mathit p}}{{\mathit \eta}_{{{c}}}{(1S)}}{{\mathit K}^{-}}$   $(1.06\pm{0.26})\times 10^{-4}$ 1670
 
$\Gamma_{18}$ ${{\mathit P}_{{{c {{\overline{\mathit c}}}}}}{(4312)}^{+}}{{\mathit K}^{-}}$ , ${{\mathit P}_{{{c {{\overline{\mathit c}}}}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \eta}_{{{c}}}{(1S)}}$   $<2.5\times 10^{-5}$ CL=95%  
 
$\Gamma_{19}$ ${{\mathit P}_{{{c {{\overline{\mathit c}}}}}}{(4380)}^{+}}{{\mathit K}^{-}}$ , ${{\mathit P}_{{{c {{\overline{\mathit c}}}}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit J / \psi}}$  [1] $(2.7\pm{1.4})\times 10^{-5}$  
 
$\Gamma_{20}$ ${{\mathit P}_{{{c}}}{(4450)}^{+}}{{\mathit K}^{-}}$ , ${{\mathit P}_{{{c}}}}$ $\rightarrow$ ${{\mathit p}}{{\mathit J / \psi}}$  [1] $(1.3\pm{0.4})\times 10^{-5}$  
 
$\Gamma_{21}$ ${{\mathit \chi}_{{{c1}}}{(1P)}}{{\mathit p}}{{\mathit K}^{-}}$   $(7.6^{+1.5}_{-1.3})\times 10^{-5}$ 1242
 
$\Gamma_{22}$ ${{\mathit \chi}_{{{c1}}}{(1P)}}{{\mathit p}}{{\mathit \pi}^{-}}$   $(5.0^{+1.3}_{-1.1})\times 10^{-6}$ 1462
 
$\Gamma_{23}$ ${{\mathit \chi}_{{{c2}}}{(1P)}}{{\mathit p}}{{\mathit K}^{-}}$   $(7.7^{+1.6}_{-1.4})\times 10^{-5}$ 1198
 
$\Gamma_{24}$ ${{\mathit \chi}_{{{c2}}}{(1P)}}{{\mathit p}}{{\mathit \pi}^{-}}$   $(4.8\pm{1.9})\times 10^{-6}$ 1427
 
$\Gamma_{25}$ ${{\mathit p}}{{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit K}^{-}}$   $(6.6^{+1.3}_{-1.1})\times 10^{-5}$ 1410
 
$\Gamma_{26}$ ${{\mathit p}}{{\mathit \psi}{(2S)}}{{\mathit K}^{-}}$   $(6.6^{+1.2}_{-1.0})\times 10^{-5}$ 1063
 
$\Gamma_{27}$ ${{\mathit \chi}_{{{c1}}}{(3872)}}{{\mathit p}}{{\mathit K}^{-}}$   $(3.5\pm{1.3})\times 10^{-5}$ 837
 
$\Gamma_{28}$ ${{\mathit \chi}_{{{c1}}}{(3872)}}{{\mathit \Lambda}{(1520)}}$   $(2.0\pm{0.9})\times 10^{-5}$ 721
 
$\Gamma_{29}$ ${{\mathit \psi}{(2S)}}{{\mathit p}}{{\mathit \pi}^{-}}$   $(7.5^{+1.6}_{-1.4})\times 10^{-6}$ 1320
 
$\Gamma_{30}$ ${{\mathit p}}{{\overline{\mathit K}}^{0}}{{\mathit \pi}^{-}}$   $(1.3\pm{0.4})\times 10^{-5}$ 2693
 
$\Gamma_{31}$ ${{\mathit p}}{{\mathit K}^{0}}{{\mathit K}^{-}}$   $<3.5\times 10^{-6}$ CL=90% 2639
 
$\Gamma_{32}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{-}}$   $(4.9\pm{0.4})\times 10^{-3}$ S=1.2  2342
 
$\Gamma_{33}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit K}^{-}}$   $(3.56\pm{0.28})\times 10^{-4}$ S=1.2  2314
 
$\Gamma_{34}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit a}_{{{1}}}{(1260)}^{-}}$   seen 2153
 
$\Gamma_{35}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit D}^{-}}$   $(4.6\pm{0.6})\times 10^{-4}$ 1886
 
$\Gamma_{36}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit D}_{{{s}}}^{-}}$   $(1.10\pm{0.10})\%$ 1833
 
$\Gamma_{37}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$   $(7.6\pm{1.1})\times 10^{-3}$ S=1.1  2323
 
$\Gamma_{38}$ ${{\mathit \Lambda}_{{{c}}}{(2595)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{{c}}}{(2595)}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(3.4\pm{1.4})\times 10^{-4}$ 2210
 
$\Gamma_{39}$ ${{\mathit \Lambda}_{{{c}}}{(2625)}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Lambda}_{{{c}}}{(2625)}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(3.3\pm{1.3})\times 10^{-4}$ 2193
 
$\Gamma_{40}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ , ${{\mathit \Sigma}_{{{c}}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{-}}$   $(5.7\pm{2.2})\times 10^{-4}$ 2265
 
$\Gamma_{41}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{++}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$ , ${{\mathit \Sigma}_{{{c}}}^{++}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}$   $(3.2\pm{1.5})\times 10^{-4}$ 2265
 
$\Gamma_{42}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{-}}$   $(1.02\pm{0.11})\times 10^{-3}$ 2184
 
$\Gamma_{43}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit p}}{{\overline{\mathit p}}}{{\mathit \pi}^{-}}$   $(2.63\pm{0.27})\times 10^{-4}$ 1805
 
$\Gamma_{44}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{0}}{{\mathit p}}{{\overline{\mathit p}}}$ , ${{\mathit \Sigma}_{{{c}}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{-}}$   $(2.3\pm{0.5})\times 10^{-5}$  
 
$\Gamma_{45}$ ${{\mathit \Sigma}_{{{c}}}{(2520)}^{0}}{{\mathit p}}{{\overline{\mathit p}}}$ , ${{\mathit \Sigma}_{{{c}}}{(2520)}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{-}}$   $(3.1\pm{0.7})\times 10^{-5}$  
 
$\Gamma_{46}$ ${{\mathit \Lambda}}{{\mathit K}^{0}}$2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}$   2591
 
$\Gamma_{47}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$ anything  [2] $(10.9\pm{2.2})\%$  
 
$\Gamma_{48}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$   $(6.2^{+1.4}_{-1.3})\%$ 2345
 
$\Gamma_{49}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \tau}^{-}}{{\overline{\mathit \nu}}_{{{\tau}}}}$   $(1.9\pm{0.5})\%$ 1933
 
$\Gamma_{50}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$   $(5.6\pm{3.1})\%$ 2335
 
$\Gamma_{51}$ ${{\mathit \Lambda}_{{{c}}}{(2595)}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$   $(7.9^{+4.0}_{-3.5})\times 10^{-3}$ 2212
 
$\Gamma_{52}$ ${{\mathit \Lambda}_{{{c}}}{(2625)}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$   $(1.3^{+0.6}_{-0.5})\%$ 2195
 
$\Gamma_{53}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{0}}{{\mathit \pi}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$   2272
 
$\Gamma_{54}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{++}}{{\mathit \pi}^{-}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$   2272
 
$\Gamma_{55}$ ${{\mathit p}}{{\mathit h}^{-}}$  [3] $<2.3\times 10^{-5}$ CL=90% 2730
 
$\Gamma_{56}$ ${{\mathit p}}{{\mathit \pi}^{-}}$   $(4.6\pm{0.8})\times 10^{-6}$ 2730
 
$\Gamma_{57}$ ${{\mathit p}}{{\mathit K}^{-}}$   $(5.5\pm{1.0})\times 10^{-6}$ 2709
 
$\Gamma_{58}$ ${{\mathit p}}{{\mathit D}_{{{s}}}^{-}}$   $(1.25\pm{0.13})\times 10^{-5}$ 2364
 
$\Gamma_{59}$ ${{\mathit p}}{{\mathit \mu}^{-}}{{\overline{\mathit \nu}}_{{{\mu}}}}$   $(4.1\pm{1.0})\times 10^{-4}$ 2730
 
$\Gamma_{60}$ ${{\mathit \Lambda}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$   $(1.08\pm{0.28})\times 10^{-6}$ 2695
 
$\Gamma_{61}$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$   $(6.9\pm{2.5})\times 10^{-8}$ 2720
 
$\Gamma_{62}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit e}^{+}}{{\mathit e}^{-}}$   $(3.1\pm{0.6})\times 10^{-7}$ 2708
 
$\Gamma_{63}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$   $(2.6^{+0.5}_{-0.4})\times 10^{-7}$ 2685
 
$\Gamma_{64}$ ${{\mathit \Lambda}{(1520)}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$    
 
$\Gamma_{65}$ ${{\mathit \Lambda}}{{\mathit \gamma}}$   $(7.1\pm{1.7})\times 10^{-6}$ 2699
 
$\Gamma_{66}$ ${{\mathit \Lambda}}{{\mathit \eta}}$   $(9^{+7}_{-5})\times 10^{-6}$ 2670
 
$\Gamma_{67}$ ${{\mathit \Lambda}}{{\mathit \eta}^{\,'}{(958)}}$   $<3.1\times 10^{-6}$ CL=90% 2611
 
$\Gamma_{68}$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(4.6\pm{1.9})\times 10^{-6}$ 2692
 
$\Gamma_{69}$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$   $(5.6\pm{1.2})\times 10^{-6}$ 2660
 
$\Gamma_{70}$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\mathit K}^{-}}$   $(1.60\pm{0.21})\times 10^{-5}$ 2605
 
$\Gamma_{71}$ ${{\mathit \Lambda}}{{\mathit \phi}}$   $(9.8\pm{2.6})\times 10^{-6}$ 2599
 
$\Gamma_{72}$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(2.08\pm{0.21})\times 10^{-5}$ 2715
 
$\Gamma_{73}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$   $(4.0\pm{0.6})\times 10^{-6}$ 2612
 
$\Gamma_{74}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(5.0\pm{0.5})\times 10^{-5}$ 2675
 
$\Gamma_{75}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$   $(1.25\pm{0.13})\times 10^{-5}$ 2524
 
FOOTNOTES
Constrained Fit information