($\mathit C$ = $\pm1$, $\mathit S$ = $\pm1$)
(including possibly non- ${\mathit {\mathit q}}$ ${\mathit {\overline{\mathit q}}}$ states)
${{\mathit D}_{{s}}^{+}}$ = ${\mathit {\mathit c}}$ ${\mathit {\overline{\mathit s}}}$, ${{\mathit D}_{{s}}^{-}}$ = ${\mathit {\overline{\mathit c}}}$ ${\mathit {\mathit s}}$, similarly for ${{\mathit D}_{{s}}^{*}}$ 's

${{\mathit D}_{{s}}^{\pm}}$

$I(J^P)$ = $0(0^{-})$ 
The angular distributions of the decays of the ${{\mathit \phi}}$ and ${{\overline{\mathit K}}^{*}{(892)}^{0}}$ in the ${{\mathit \phi}}{{\mathit \pi}^{+}}$ and ${{\mathit K}^{+}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$ modes strongly indicate that the spin is zero. The parity given is that expected of a ${{\mathit c}}{{\overline{\mathit s}}}$ ground state.
${{\mathit D}_{{s}}^{\pm}}$ MASS   $1968.35 \pm0.07$ MeV 
${\mathit m}_{{{\mathit D}_{{s}}^{\pm}}}–{\mathit m}_{{{\mathit D}^{\pm}}}$   $98.69 \pm0.05$ MeV 
${{\mathit D}_{{s}}^{\pm}}$ MEAN LIFE   $(5.04 \pm0.04) \times 10^{-13}$ s (S = 1.2)
$\mathit CP$ VIOLATING ASYMMETRIES OF $\mathit P$-ODD ($\mathit T$-ODD) MOMENTS
$\mathit A_{\mathit Tviol}$( ${{\mathit K}_S^0}$ ${{\mathit K}^{\pm}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ) in ${{\mathit D}_{{s}}^{\pm}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{\pm}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $-0.014 \pm0.008$  
Unless otherwise noted, the branching fractions for modes with a resonance in the final state include all the decay modes of the resonance. ${{\mathit D}_{{s}}^{-}}$ modes are charge conjugates of the modes below.
Constrained Fit information