BOTTOM, STRANGE MESONS
($\boldsymbol B$ = $\pm1$, $\boldsymbol S$ = $\mp{}$1)
${{\mathit B}_{{s}}^{0}}$ = ${\mathit {\mathit s}}$ ${\mathit {\overline{\mathit b}}}$, ${{\overline{\mathit B}}_{{s}}^{0}}$ = ${\mathit {\overline{\mathit s}}}$ ${\mathit {\mathit b}}$,
similarly for ${{\mathit B}_{{s}}^{*}}$'s
INSPIRE search

${{\boldsymbol B}_{{s}}^{0}}$ $I(J^P)$ = $0(0^{-})$ 

$\mathit I$, $\mathit J$, ${}^{P}$ need confirmation. Quantum numbers shown are quark-model predictions.
${{\mathit B}_{{s}}^{0}}$ MASS   $5366.88 \pm0.14$ MeV 
${\mathit m}_{{{\mathit B}_{{s}}^{0}}}–{\mathit m}_{{{\mathit B}^{}}}$   $87.38 \pm0.16$ MeV 
$\Gamma _{{{\mathit B}_{{s}}^{0}}}$   $(66.00 \pm0.16) \times 10^{10}$ s${}^{-1}$ 
$\Delta \Gamma _{{{\mathit B}_{{s}}^{0}}}/\Gamma _{{{\mathit B}_{{s}}^{0}}}$   $0.129 \pm0.006$  
${{\mathit B}_{{sH}}^{0}}$ MEAN LIFE   $(1.620 \pm0.007) \times 10^{-12}$ s 
${{\mathit B}_{{sL}}^{0}}$ MEAN LIFE   $(1.423 \pm0.005) \times 10^{-12}$ s 
${{\mathit B}_{{s}}^{0}}$ MEAN LIFE (Flavor specific)   $(1.527 \pm0.011) \times 10^{-12}$ s 
PRODUCTION ASYMMETRIES
A$_{P}({{\mathit B}_{{s}}^{0}}$)   $0.012 \pm0.016$  
These branching fractions all scale with B( ${{\overline{\mathit b}}}$ $\rightarrow$ ${{\mathit B}_{{s}}^{0}}$ ).
The branching fraction B( ${{\mathit B}_{{s}}^{0}}$ $\rightarrow$ ${{\mathit D}_{{s}}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ anything) is not a pure measurement since the measured product branching fraction B( ${{\overline{\mathit b}}}$ $\rightarrow$ ${{\mathit B}_{{s}}^{0}}$ ) ${\times }$ B( ${{\mathit B}_{{s}}^{0}}$ $\rightarrow$ ${{\mathit D}_{{s}}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ anything) was used to determine B( ${{\overline{\mathit b}}}$ $\rightarrow$ ${{\mathit B}_{{s}}^{0}}$ ), as described in the note on ``${{\mathit B}^{0}}-{{\overline{\mathit B}}^{0}}$ Mixing''
For inclusive branching fractions, $\mathit e.g.,$ ${{\mathit B}}$ $\rightarrow$ ${{\mathit D}^{\pm}}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.
$\Gamma_{1}$ ${{\mathit D}_{{s}}^{-}}$ anything  $(93\pm{25})\%$
$\Gamma_{2}$ ${{\mathit \ell}}{{\mathit \nu}_{{{{\mathit \ell}}}}}{{\mathit X}}$  $(9.6\pm{0.8})\%$
$\Gamma_{3}$ ${{\mathit e}^{+}}{{\mathit \nu}}{{\mathit X}^{-}}$  $(9.1\pm{0.8})\%$
$\Gamma_{4}$ ${{\mathit \mu}^{+}}{{\mathit \nu}}{{\mathit X}^{-}}$  $(10.2\pm{1.0})\%$
$\Gamma_{5}$ ${{\mathit D}_{{s}}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ anything [1] $(8.1\pm{1.3})\%$
$\Gamma_{6}$ ${{\mathit D}_{{s}}^{*-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ anything  $(5.4\pm{1.1})\%$
$\Gamma_{7}$ ${{\mathit D}_{{s1}}{(2536)}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{\mu}}}$ , ${{\mathit D}_{{s1}}^{-}}$ $\rightarrow$ ${{\mathit D}^{*-}}{{\mathit K}_S^0}$  $(2.7\pm{0.7})\times 10^{-3}$
$\Gamma_{8}$ ${{\mathit D}_{{s1}}{(2536)}^{-}}{{\mathit X}}{{\mathit \mu}^{+}}{{\mathit \nu}}$ , ${{\mathit D}_{{s1}}^{-}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{+}}$  $(4.4\pm{1.3})\times 10^{-3}$
$\Gamma_{9}$ ${{\mathit D}_{{s2}}{(2573)}^{-}}{{\mathit X}}{{\mathit \mu}^{+}}{{\mathit \nu}}$ , ${{\mathit D}_{{s2}}^{-}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{+}}$  $(2.7\pm{1.0})\times 10^{-3}$
$\Gamma_{10}$ ${{\mathit D}_{{s}}^{-}}{{\mathit \pi}^{+}}$  $(3.00\pm{0.23})\times 10^{-3}$ S=1.0 2320
$\Gamma_{11}$ ${{\mathit D}_{{s}}^{-}}{{\mathit \rho}^{+}}$  $(6.9\pm{1.4})\times 10^{-3}$ 2249
$\Gamma_{12}$ ${{\mathit D}_{{s}}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(6.1\pm{1.0})\times 10^{-3}$ S=1.0 2301
$\Gamma_{13}$ ${{\mathit D}_{{s1}}{(2536)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{s1}}^{-}}$ $\rightarrow$ ${{\mathit D}_{{s}}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(2.5\pm{0.8})\times 10^{-5}$
$\Gamma_{14}$ ${{\mathit D}_{{s}}^{\mp}}{{\mathit K}^{\pm}}$  $(2.27\pm{0.19})\times 10^{-4}$ S=1.0 2293
$\Gamma_{15}$ ${{\mathit D}_{{s}}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(3.2\pm{0.6})\times 10^{-4}$ 2249
$\Gamma_{16}$ ${{\mathit D}_{{s}}^{+}}{{\mathit D}_{{s}}^{-}}$  $(4.4\pm{0.5})\times 10^{-3}$ S=1.0 1824
$\Gamma_{17}$ ${{\mathit D}_{{s}}^{-}}{{\mathit D}^{+}}$  $(2.8\pm{0.5})\times 10^{-4}$ 1875
$\Gamma_{18}$ ${{\mathit D}^{+}}{{\mathit D}^{-}}$  $(2.2\pm{0.6})\times 10^{-4}$ 1925
$\Gamma_{19}$ ${{\mathit D}^{0}}{{\overline{\mathit D}}^{0}}$  $(1.9\pm{0.5})\times 10^{-4}$ 1930
$\Gamma_{20}$ ${{\mathit D}_{{s}}^{*-}}{{\mathit \pi}^{+}}$  $(2.0\pm{0.5})\times 10^{-3}$ 2265
$\Gamma_{21}$ ${{\mathit D}_{{s}}^{*\mp}}{{\mathit K}^{\pm}}$  $(1.33\pm{0.35})\times 10^{-4}$
$\Gamma_{22}$ ${{\mathit D}_{{s}}^{*-}}{{\mathit \rho}^{+}}$  $(9.6\pm{2.1})\times 10^{-3}$ 2191
$\Gamma_{23}$ ${{\mathit D}_{{s}}^{*+}}{{\mathit D}_{{s}}^{-}}{+}$ ${{\mathit D}_{{s}}^{*-}}{{\mathit D}_{{s}}^{+}}$  $(1.39\pm{0.17})\%$ 1742
$\Gamma_{24}$ ${{\mathit D}_{{s}}^{*+}}{{\mathit D}_{{s}}^{*-}}$  $(1.44\pm{0.21})\%$ S=1.1 1655
$\Gamma_{25}$ ${{\mathit D}_{{s}}^{(*)+}}{{\mathit D}_{{s}}^{(*)-}}$  $(4.5\pm{1.4})\%$
$\Gamma_{26}$ ${{\overline{\mathit D}}^{*0}}{{\overline{\mathit K}}^{0}}$  $(2.8\pm{1.1})\times 10^{-4}$ 2278
$\Gamma_{27}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}^{0}}$  $(4.3\pm{0.9})\times 10^{-4}$ 2330
$\Gamma_{28}$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$  $(1.04\pm{0.13})\times 10^{-3}$ 2312
$\Gamma_{29}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$  $(4.4\pm{0.6})\times 10^{-4}$ 2264
$\Gamma_{30}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}^{*}{(1410)}}$  $(3.9\pm{3.5})\times 10^{-4}$ 2117
$\Gamma_{31}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{0}}^{*}{(1430)}}$  $(3.0\pm{0.7})\times 10^{-4}$ 2113
$\Gamma_{32}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{2}}^{*}{(1430)}}$  $(1.1\pm{0.4})\times 10^{-4}$ 2112
$\Gamma_{33}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}^{*}{(1680)}}$  $<7.8\times 10^{-5}$ CL=90%1997
$\Gamma_{34}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{0}}^{*}{(1950)}}$  $<1.1\times 10^{-4}$ CL=90%1890
$\Gamma_{35}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{3}}^{*}{(1780)}}$  $<2.6\times 10^{-5}$ CL=90%1971
$\Gamma_{36}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{4}}^{*}{(2045)}}$  $<3.1\times 10^{-5}$ CL=90%1835
$\Gamma_{37}$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ (non-resonant)  $(2.1\pm{0.8})\times 10^{-4}$ 2312
$\Gamma_{38}$ ${{\mathit D}_{{s2}}^{*}{(2573)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{s2}}^{*}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}$  $(2.6\pm{0.4})\times 10^{-4}$
$\Gamma_{39}$ ${{\mathit D}_{{s1}}^{*}{(2700)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{s1}}^{*}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}$  $(1.6\pm{0.8})\times 10^{-5}$
$\Gamma_{40}$ ${{\mathit D}_{{s1}}^{*}{(2860)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{s1}}^{*}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}$  $(5\pm{4})\times 10^{-5}$
$\Gamma_{41}$ ${{\mathit D}_{{s3}}^{*}{(2860)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{s3}}^{*}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}$  $(2.2\pm{0.6})\times 10^{-5}$
$\Gamma_{42}$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{+}}{{\mathit K}^{-}}$  $(5.5\pm{0.8})\times 10^{-5}$ 2243
$\Gamma_{43}$ ${{\overline{\mathit D}}^{0}}{{\mathit f}_{{0}}{(980)}}$  $<3.1\times 10^{-6}$ CL=90%2242
$\Gamma_{44}$ ${{\overline{\mathit D}}^{0}}{{\mathit \phi}}$  $(3.0\pm{0.5})\times 10^{-5}$ 2235
$\Gamma_{45}$ ${{\overline{\mathit D}}^{*0}}{{\mathit \phi}}$  $(3.7\pm{0.6})\times 10^{-5}$ 2178
$\Gamma_{46}$ ${{\mathit D}^{*\mp}}{{\mathit \pi}^{\pm}}$  $<6.1\times 10^{-6}$ CL=90%
$\Gamma_{47}$ ${{\mathit \eta}_{{c}}}{{\mathit \phi}}$  $(5.0\pm{0.9})\times 10^{-4}$ 1663
$\Gamma_{48}$ ${{\mathit \eta}_{{c}}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(1.8\pm{0.7})\times 10^{-4}$ 1840
$\Gamma_{49}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \phi}}$  $(1.08\pm{0.08})\times 10^{-3}$ S=1.0 1588
$\Gamma_{50}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \phi}}{{\mathit \phi}}$  $(1.24^{+0.17}_{-0.19})\times 10^{-5}$ 764
$\Gamma_{51}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{0}}$  $<1.2\times 10^{-3}$ CL=90%1787
$\Gamma_{52}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \eta}}$  $(4.0\pm{0.7})\times 10^{-4}$ S=1.4 1733
$\Gamma_{53}$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}_S^0}$  $(1.88\pm{0.15})\times 10^{-5}$ 1743
$\Gamma_{54}$ ${{\mathit J / \psi}{(1S)}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$  $(4.1\pm{0.4})\times 10^{-5}$ 1637
$\Gamma_{55}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \eta}^{\,'}}$  $(3.3\pm{0.4})\times 10^{-4}$ 1612
$\Gamma_{56}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(2.09\pm{0.23})\times 10^{-4}$ S=1.3 1775
$\Gamma_{57}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{0}}{(500)}}$ , ${{\mathit f}_{{0}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $<4\times 10^{-6}$ CL=90%
$\Gamma_{58}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \rho}}$ , ${{\mathit \rho}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $<4\times 10^{-6}$ CL=90%
$\Gamma_{59}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{0}}{(980)}}$ , ${{\mathit f}_{{0}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(1.28\pm{0.18})\times 10^{-4}$ S=1.7 
$\Gamma_{60}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}{(1270)}}$ , ${{\mathit f}_{{2}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(1.1\pm{0.4})\times 10^{-6}$
$\Gamma_{61}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}{(1270)}}$ $_{0}$ , ${{\mathit f}_{{2}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(7.5\pm{1.8})\times 10^{-7}$
$\Gamma_{62}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}{(1270)}}$ $_{\parallel}$ , ${{\mathit f}_{{2}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(1.09\pm{0.34})\times 10^{-6}$
$\Gamma_{63}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}{(1270)}}$ $_{\perp}$ , ${{\mathit f}_{{2}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(1.3\pm{0.8})\times 10^{-6}$
$\Gamma_{64}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{0}}{(1370)}}$ , ${{\mathit f}_{{0}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(4.5^{+0.7}_{-4.0})\times 10^{-5}$
$\Gamma_{65}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{0}}{(1500)}}$ , ${{\mathit f}_{{0}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(2.11^{+0.40}_{-0.29})\times 10^{-5}$
$\Gamma_{66}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}^{\,'}{(1525)}}$ $_{0}$ , ${{\mathit f}_{{2}}^{\,'}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(1.07\pm{0.24})\times 10^{-6}$
$\Gamma_{67}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}^{\,'}{(1525)}}$ $_{\parallel}$ , ${{\mathit f}_{{2}}^{\,'}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(1.3^{+2.7}_{-0.9})\times 10^{-7}$
$\Gamma_{68}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}^{\,'}{(1525)}}$ $_{\perp}$ , ${{\mathit f}_{{2}}^{\,'}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(5\pm{4})\times 10^{-7}$
$\Gamma_{69}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{0}}{(1790)}}$ , ${{\mathit f}_{{0}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(5.0^{+11.0}_{-1.1})\times 10^{-6}$
$\Gamma_{70}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ (nonresonant)  $(1.8^{+1.1}_{-0.4})\times 10^{-5}$ 1775
$\Gamma_{71}$ ${{\mathit J / \psi}{(1S)}}{{\overline{\mathit K}}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $<4.4\times 10^{-5}$ CL=90%1675
$\Gamma_{72}$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{+}}{{\mathit K}^{-}}$  $(7.9\pm{0.7})\times 10^{-4}$ S=1.0 1601
$\Gamma_{73}$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ + c.c.  $(9.2\pm{1.3})\times 10^{-4}$ 1538
$\Gamma_{74}$ ${{\mathit J / \psi}{(1S)}}{{\overline{\mathit K}}^{0}}{{\mathit K}^{+}}{{\mathit K}^{-}}$  $<1.2\times 10^{-5}$ CL=90%1333
$\Gamma_{75}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}^{\,'}{(1525)}}$  $(2.6\pm{0.6})\times 10^{-4}$ 1310
$\Gamma_{76}$ ${{\mathit J / \psi}{(1S)}}{{\mathit p}}{{\overline{\mathit p}}}$  $(3.6\pm{0.4})\times 10^{-6}$ 982
$\Gamma_{77}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \gamma}}$  $<7.3\times 10^{-6}$ CL=90%1790
$\Gamma_{78}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(7.8\pm{1.0})\times 10^{-5}$ 1731
$\Gamma_{79}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{1}}{(1285)}}$  $(7.2\pm{1.4})\times 10^{-5}$ 1460
$\Gamma_{80}$ ${{\mathit \psi}{(2S)}}{{\mathit \eta}}$  $(3.3\pm{0.9})\times 10^{-4}$ 1338
$\Gamma_{81}$ ${{\mathit \psi}{(2S)}}{{\mathit \eta}^{\,'}}$  $(1.29\pm{0.35})\times 10^{-4}$ 1158
$\Gamma_{82}$ ${{\mathit \psi}{(2S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(7.1\pm{1.3})\times 10^{-5}$ 1397
$\Gamma_{83}$ ${{\mathit \psi}{(2S)}}{{\mathit \phi}}$  $(5.4\pm{0.6})\times 10^{-4}$ 1120
$\Gamma_{84}$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$  $(3.1\pm{0.4})\times 10^{-5}$ 1310
$\Gamma_{85}$ ${{\mathit \psi}{(2S)}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$  $(3.3\pm{0.5})\times 10^{-5}$ 1196
$\Gamma_{86}$ ${{\mathit \chi}_{{c1}}}{{\mathit \phi}}$  $(2.04\pm{0.30})\times 10^{-4}$ 1274
$\Gamma_{87}$ ${{\mathit \chi}_{{c1}}}{{\mathit K}^{+}}{{\mathit K}^{-}}$  1292
$\Gamma_{88}$ ${{\mathit \chi}_{{c2}}}{{\mathit K}^{+}}{{\mathit K}^{-}}$  1254
$\Gamma_{89}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(7.0\pm{1.0})\times 10^{-7}$ 2680
$\Gamma_{90}$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$  $<2.1\times 10^{-4}$ CL=90%2680
$\Gamma_{91}$ ${{\mathit \eta}}{{\mathit \pi}^{0}}$  $<1.0\times 10^{-3}$ CL=90%2654
$\Gamma_{92}$ ${{\mathit \eta}}{{\mathit \eta}}$  $<1.5\times 10^{-3}$ CL=90%2627
$\Gamma_{93}$ ${{\mathit \rho}^{0}}{{\mathit \rho}^{0}}$  $<3.20\times 10^{-4}$ CL=90%2569
$\Gamma_{94}$ ${{\mathit \eta}^{\,'}}{{\mathit \eta}^{\,'}}$  $(3.3\pm{0.7})\times 10^{-5}$ 2507
$\Gamma_{95}$ ${{\mathit \eta}^{\,'}}{{\mathit \phi}}$  $<8.2\times 10^{-7}$ CL=90%2495
$\Gamma_{96}$ ${{\mathit \phi}}{{\mathit f}_{{0}}{(980)}}$ , ${{\mathit f}_{{0}}{(980)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(1.12\pm{0.21})\times 10^{-6}$
$\Gamma_{97}$ ${{\mathit \phi}}{{\mathit f}_{{2}}{(1270)}}$ , ${{\mathit f}_{{2}}{(1270)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(6.1^{+1.8}_{-1.5})\times 10^{-7}$
$\Gamma_{98}$ ${{\mathit \phi}}{{\mathit \rho}^{0}}$  $(2.7\pm{0.8})\times 10^{-7}$ 2526
$\Gamma_{99}$ ${{\mathit \phi}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(3.5\pm{0.5})\times 10^{-6}$ 2579
$\Gamma_{100}$ ${{\mathit \phi}}{{\mathit \phi}}$  $(1.87\pm{0.15})\times 10^{-5}$ S=1.0 2482
$\Gamma_{101}$ ${{\mathit \phi}}{{\mathit \phi}}{{\mathit \phi}}$  $(2.2\pm{0.7})\times 10^{-6}$ 2165
$\Gamma_{102}$ ${{\mathit \pi}^{+}}{{\mathit K}^{-}}$  $(5.8\pm{0.7})\times 10^{-6}$ 2659
$\Gamma_{103}$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$  $(2.66\pm{0.22})\times 10^{-5}$ 2638
$\Gamma_{104}$ ${{\mathit K}^{0}}{{\overline{\mathit K}}^{0}}$  $(2.0\pm{0.6})\times 10^{-5}$ 2637
$\Gamma_{105}$ ${{\mathit K}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(9.5\pm{2.1})\times 10^{-6}$ 2653
$\Gamma_{106}$ ${{\mathit K}^{0}}{{\mathit K}^{\pm}}{{\mathit \pi}^{\mp}}$  $(8.4\pm{0.9})\times 10^{-5}$ 2622
$\Gamma_{107}$ ${{\mathit K}^{*}{(892)}^{-}}{{\mathit \pi}^{+}}$  $(2.9\pm{1.1})\times 10^{-6}$ 2607
$\Gamma_{108}$ ${{\mathit K}^{*}{(892)}^{\pm}}{{\mathit K}^{\mp}}$  $(1.9\pm{0.5})\times 10^{-5}$ 2585
$\Gamma_{109}$ ${{\mathit K}_{{0}}^{*}{(1430)}^{\pm}}{{\mathit K}^{\mp}}$  $(3.1\pm{2.5})\times 10^{-5}$
$\Gamma_{110}$ ${{\mathit K}_{{2}}^{*}{(1430)}^{\pm}}{{\mathit K}^{\mp}}$  $(1.0\pm{1.7})\times 10^{-5}$
$\Gamma_{111}$ ${{\mathit K}^{*}{(892)}^{0}}{{\overline{\mathit K}}^{0}}$ + c.c.  $(2.0\pm{0.6})\times 10^{-5}$ 2585
$\Gamma_{112}$ ${{\mathit K}_{{0}}^{*}{(1430)}}{{\overline{\mathit K}}^{0}}$ + c.c.  $(3.3\pm{1.0})\times 10^{-5}$ 2468
$\Gamma_{113}$ ${{\mathit K}_{{2}}^{*}{(1430)}^{0}}{{\overline{\mathit K}}^{0}}$ + c.c.  $(1.7\pm{2.2})\times 10^{-5}$ 2467
$\Gamma_{114}$ ${{\mathit K}_S^0}$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}$ + c.c.  $(1.6\pm{0.4})\times 10^{-5}$ 2585
$\Gamma_{115}$ ${{\mathit K}^{0}}{{\mathit K}^{+}}{{\mathit K}^{-}}$  $(1.3\pm{0.6})\times 10^{-6}$ 2568
$\Gamma_{116}$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit \rho}^{0}}$  $<7.67\times 10^{-4}$ CL=90%2550
$\Gamma_{117}$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit K}^{*}{(892)}^{0}}$  $(1.11\pm{0.27})\times 10^{-5}$ 2531
$\Gamma_{118}$ ${{\mathit K}^{*}{(892)}^{0}}{{\overline{\mathit K}}_{{2}}^{*}{(1430)}^{0}}$  2408
$\Gamma_{119}$ ${{\mathit K}_{{2}}^{*}{(1430)}^{0}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$  2408
$\Gamma_{120}$ ${{\mathit K}_{{2}}^{*}{(1430)}^{0}}{{\overline{\mathit K}}_{{2}}^{*}{(1430)}^{0}}$  2272
$\Gamma_{121}$ ${{\mathit \phi}}{{\mathit K}^{*}{(892)}^{0}}$  $(1.14\pm{0.30})\times 10^{-6}$ 2507
$\Gamma_{122}$ ${{\mathit p}}{{\overline{\mathit p}}}$  $<1.5\times 10^{-8}$ CL=90%2514
$\Gamma_{123}$ ${{\mathit p}}{{\overline{\mathit p}}}{{\mathit K}^{+}}{{\mathit K}^{-}}$  $(4.5\pm{0.5})\times 10^{-6}$ 2231
$\Gamma_{124}$ ${{\mathit p}}{{\overline{\mathit p}}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$  $(1.39\pm{0.26})\times 10^{-6}$ 2355
$\Gamma_{125}$ ${{\mathit p}}{{\overline{\mathit p}}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $(4.3\pm{2.0})\times 10^{-7}$ 2454
$\Gamma_{126}$ ${{\mathit p}}{{\overline{\mathit \Lambda}}}{{\mathit K}^{-}}$ + c.c.  $(5.5\pm{1.0})\times 10^{-6}$ 2358
$\Gamma_{127}$ ${{\mathit \Lambda}_{{c}}^{-}}{{\mathit \Lambda}}{{\mathit \pi}^{+}}$  $(3.6\pm{1.6})\times 10^{-4}$ 1979
$\Gamma_{128}$ ${{\mathit \Lambda}_{{c}}^{-}}{{\mathit \Lambda}_{{c}}^{+}}$  $<8.0\times 10^{-5}$ CL=95%1405
    constrained fit information