BOTTOM, STRANGE MESONS
($\mathit B$ = $\pm1$, $\mathit S$ = $\mp{}$1)
${{\mathit B}_{{s}}^{0}}$ = ${\mathit {\mathit s}}$ ${\mathit {\overline{\mathit b}}}$, ${{\overline{\mathit B}}_{{s}}^{0}}$ = ${\mathit {\overline{\mathit s}}}$ ${\mathit {\mathit b}}$,
similarly for ${{\mathit B}_{{s}}^{*}}$ 's
INSPIRE  

${{\mathit B}_{{s}}^{0}}$

$I(J^P)$ = $0(0^{-})$ 
$\mathit I$, $\mathit J$, ${}^{P}$ need confirmation. Quantum numbers shown are quark-model predictions.
${{\mathit B}_{{s}}^{0}}$ MASS   $5366.92 \pm0.10$ MeV 
 
${\mathit m}_{{{\mathit B}_{{s}}^{0}}}–{\mathit m}_{{{\mathit B}^{}}}$   $87.42 \pm0.14$ MeV 
 
$\Gamma _{{{\mathit B}_{{s}}^{0}} }$   $(65.78 \pm0.24) \times 10^{10}$ s${}^{-1}$ (S = 2.6)
 
$\Delta \Gamma _{{{\mathit B}_{{s}}^{0}} }/\Gamma _{{{\mathit B}_{{s}}^{0}} }$   $0.128 \pm0.007$  
 
${{\mathit B}_{{sH}}^{0}}$ MEAN LIFE   $(1.624 \pm0.009) \times 10^{-12}$ s 
 
${{\mathit B}_{{sL}}^{0}}$ MEAN LIFE   $(1.429 \pm0.007) \times 10^{-12}$ s 
 
${{\mathit B}_{{s}}^{0}}$ MEAN LIFE (Flavor specific)   $(1.527 \pm0.011) \times 10^{-12}$ s 
 
PRODUCTION ASYMMETRIES
A$_{P}({{\mathit B}_{{s}}^{0}}$ )   $0.012 \pm0.016$  
 
${{\mathit B}_{{s}}^{0}}$ $\rightarrow$ ${{\mathit D}_{{s}}^{*-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ FORM FACTORS
$\rho {}^{2}$ (form factor slope)   $1.17 \pm0.08$  
 
These branching fractions all scale with B( ${{\overline{\mathit b}}}$ $\rightarrow$ ${{\mathit B}_{{s}}^{0}}$ ).
The branching fraction B( ${{\mathit B}_{{s}}^{0}}$ $\rightarrow$ ${{\mathit D}_{{s}}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ anything) is not a pure measurement since the measured product branching fraction B( ${{\overline{\mathit b}}}$ $\rightarrow$ ${{\mathit B}_{{s}}^{0}}$ ) ${\times }$ B( ${{\mathit B}_{{s}}^{0}}$ $\rightarrow$ ${{\mathit D}_{{s}}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ anything) was used to determine B( ${{\overline{\mathit b}}}$ $\rightarrow$ ${{\mathit B}_{{s}}^{0}}$ ), as described in the note on ``${{\mathit B}^{0}}-{{\overline{\mathit B}}^{0}}$ Mixing''
For inclusive branching fractions, $\mathit e.g.,$ ${{\mathit B}}$ $\rightarrow$ ${{\mathit D}^{\pm}}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.
$\Gamma_{1}$ ${{\mathit D}_{{s}}^{-}}$ anything   $(62\pm{6})\%$  
 
$\Gamma_{2}$ ${{\mathit \ell}}{{\mathit \nu}_{{{{\mathit \ell}}}}}{{\mathit X}}$   $(9.6\pm{0.8})\%$  
 
$\Gamma_{3}$ ${{\mathit e}^{+}}{{\mathit \nu}}{{\mathit X}^{-}}$   $(9.1\pm{0.8})\%$  
 
$\Gamma_{4}$ ${{\mathit \mu}^{+}}{{\mathit \nu}}{{\mathit X}^{-}}$   $(10.2\pm{1.0})\%$  
 
$\Gamma_{5}$ ${{\mathit D}_{{s}}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ anything  [1] $(8.1\pm{1.3})\%$  
 
$\Gamma_{6}$ ${{\mathit D}_{{s}}^{*-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ anything   $(5.4\pm{1.1})\%$  
 
$\Gamma_{7}$ ${{\mathit D}_{{s}}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{\mu}}}$   $(2.44\pm{0.23})\%$ 2321
 
$\Gamma_{8}$ ${{\mathit D}_{{s}}^{*-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{\mu}}}$   $(5.3\pm{0.5})\%$ 2266
 
$\Gamma_{9}$ ${{\mathit D}_{{s1}}{(2536)}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{\mu}}}$ , ${{\mathit D}_{{s1}}^{-}}$ $\rightarrow$ ${{\mathit D}^{*-}}{{\mathit K}_S^0}$   $(2.7\pm{0.7})\times 10^{-3}$  
 
$\Gamma_{10}$ ${{\mathit D}_{{s1}}{(2536)}^{-}}{{\mathit X}}{{\mathit \mu}^{+}}{{\mathit \nu}}$ , ${{\mathit D}_{{s1}}^{-}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{+}}$   $(4.4\pm{1.3})\times 10^{-3}$  
 
$\Gamma_{11}$ ${{\mathit D}_{{s2}}{(2573)}^{-}}{{\mathit X}}{{\mathit \mu}^{+}}{{\mathit \nu}}$ , ${{\mathit D}_{{s2}}^{-}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{+}}$   $(2.7\pm{1.0})\times 10^{-3}$  
 
$\Gamma_{12}$ ${{\mathit K}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{\mu}}}$   $(1.06\pm{0.09})\times 10^{-4}$ 2660
 
$\Gamma_{13}$ ${{\mathit D}_{{s}}^{-}}{{\mathit \pi}^{+}}$   $(2.98\pm{0.14})\times 10^{-3}$ 2320
 
$\Gamma_{14}$ ${{\mathit D}_{{s}}^{-}}{{\mathit \rho}^{+}}$   $(6.8\pm{1.4})\times 10^{-3}$ 2249
 
$\Gamma_{15}$ ${{\mathit D}_{{s}}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(6.1\pm{1.0})\times 10^{-3}$ 2301
 
$\Gamma_{16}$ ${{\mathit D}_{{s1}}{(2536)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{s1}}^{-}}$ $\rightarrow$ ${{\mathit D}_{{s}}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(2.4\pm{0.8})\times 10^{-5}$  
 
$\Gamma_{17}$ ${{\mathit D}_{{s}}^{\mp}}{{\mathit K}^{\pm}}$   $(2.25\pm{0.12})\times 10^{-4}$ 2293
 
$\Gamma_{18}$ ${{\mathit D}_{{s}}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(3.2\pm{0.6})\times 10^{-4}$ 2249
 
$\Gamma_{19}$ ${{\mathit D}_{{s}}^{+}}{{\mathit D}_{{s}}^{-}}$   $(4.4\pm{0.5})\times 10^{-3}$ 1824
 
$\Gamma_{20}$ ${{\mathit D}_{{s}}^{-}}{{\mathit D}^{+}}$   $(2.8\pm{0.5})\times 10^{-4}$ 1875
 
$\Gamma_{21}$ ${{\mathit D}^{+}}{{\mathit D}^{-}}$   $(2.2\pm{0.6})\times 10^{-4}$ 1925
 
$\Gamma_{22}$ ${{\mathit D}^{*+}}{{\mathit D}^{-}}$   1853
 
$\Gamma_{23}$ ${{\mathit D}^{*-}}{{\mathit D}^{+}}$   1853
 
$\Gamma_{24}$ ${{\mathit D}^{0}}{{\overline{\mathit D}}^{0}}$   $(1.9\pm{0.5})\times 10^{-4}$ 1930
 
$\Gamma_{25}$ ${{\mathit D}_{{s}}^{*-}}{{\mathit \pi}^{+}}$   $(1.9^{+0.5}_{-0.4})\times 10^{-3}$ 2265
 
$\Gamma_{26}$ ${{\mathit D}_{{s}}^{*\mp}}{{\mathit K}^{\pm}}$   $(1.32^{+0.40}_{-0.32})\times 10^{-4}$  
 
$\Gamma_{27}$ ${{\mathit D}_{{s}}^{*-}}{{\mathit \rho}^{+}}$   $(9.5\pm{2.0})\times 10^{-3}$ 2191
 
$\Gamma_{28}$ ${{\mathit D}_{{s}}^{*+}}{{\mathit D}_{{s}}^{-}}{+}$ ${{\mathit D}_{{s}}^{*-}}{{\mathit D}_{{s}}^{+}}$   $(1.39\pm{0.17})\%$ 1742
 
$\Gamma_{29}$ ${{\mathit D}_{{s}}^{*+}}{{\mathit D}_{{s}}^{*-}}$   $(1.44\pm{0.21})\%$ S=1.1  1655
 
$\Gamma_{30}$ ${{\mathit D}_{{s}}^{(*)+}}{{\mathit D}_{{s}}^{(*)-}}$   $(4.5\pm{1.4})\%$  
 
$\Gamma_{31}$ ${{\mathit D}^{*-}}{{\mathit D}_{{s}}^{+}}$   $(3.9\pm{0.8})\times 10^{-4}$ 1801
 
$\Gamma_{32}$ ${{\overline{\mathit D}}^{*0}}{{\overline{\mathit K}}^{0}}$   $(2.8\pm{1.1})\times 10^{-4}$ 2278
 
$\Gamma_{33}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}^{0}}$   $(4.3\pm{0.9})\times 10^{-4}$ 2330
 
$\Gamma_{34}$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$   $(1.04\pm{0.13})\times 10^{-3}$ 2312
 
$\Gamma_{35}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$   $(4.4\pm{0.6})\times 10^{-4}$ 2264
 
$\Gamma_{36}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}^{*}{(1410)}}$   $(3.9\pm{3.5})\times 10^{-4}$ 2117
 
$\Gamma_{37}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{0}}^{*}{(1430)}}$   $(3.0\pm{0.7})\times 10^{-4}$ 2113
 
$\Gamma_{38}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{2}}^{*}{(1430)}}$   $(1.1\pm{0.4})\times 10^{-4}$ 2112
 
$\Gamma_{39}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}^{*}{(1680)}}$   $<7.8\times 10^{-5}$ CL=90% 1997
 
$\Gamma_{40}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{0}}^{*}{(1950)}}$   $<1.1\times 10^{-4}$ CL=90% 1890
 
$\Gamma_{41}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{3}}^{*}{(1780)}}$   $<2.6\times 10^{-5}$ CL=90% 1970
 
$\Gamma_{42}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{4}}^{*}{(2045)}}$   $<3.1\times 10^{-5}$ CL=90% 1835
 
$\Gamma_{43}$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ (non-resonant)   $(2.1\pm{0.8})\times 10^{-4}$ 2312
 
$\Gamma_{44}$ ${{\mathit D}_{{s2}}^{*}{(2573)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{s2}}^{*}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}$   $(2.6\pm{0.4})\times 10^{-4}$  
 
$\Gamma_{45}$ ${{\mathit D}_{{s1}}^{*}{(2700)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{s1}}^{*}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}$   $(1.6\pm{0.8})\times 10^{-5}$  
 
$\Gamma_{46}$ ${{\mathit D}_{{s1}}^{*}{(2860)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{s1}}^{*}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}$   $(5\pm{4})\times 10^{-5}$  
 
$\Gamma_{47}$ ${{\mathit D}_{{s3}}^{*}{(2860)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{s3}}^{*}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}$   $(2.2\pm{0.6})\times 10^{-5}$  
 
$\Gamma_{48}$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{+}}{{\mathit K}^{-}}$   $(5.6\pm{0.9})\times 10^{-5}$ 2243
 
$\Gamma_{49}$ ${{\overline{\mathit D}}^{0}}{{\mathit f}_{{0}}{(980)}}$   $<3.1\times 10^{-6}$ CL=90% 2242
 
$\Gamma_{50}$ ${{\overline{\mathit D}}^{0}}{{\mathit \phi}}$   $(3.0\pm{0.5})\times 10^{-5}$ 2235
 
$\Gamma_{51}$ ${{\overline{\mathit D}}^{*0}}{{\mathit \phi}}$   $(3.7\pm{0.6})\times 10^{-5}$ 2178
 
$\Gamma_{52}$ ${{\mathit D}^{*\mp}}{{\mathit \pi}^{\pm}}$   $<6.1\times 10^{-6}$ CL=90%  
 
$\Gamma_{53}$ ${{\mathit \eta}_{{c}}}{{\mathit \phi}}$   $(5.0\pm{0.9})\times 10^{-4}$ 1663
 
$\Gamma_{54}$ ${{\mathit \eta}^{\,'}}{{\mathit X}}$ $_{ {{\mathit s}} {{\overline{\mathit s}}} }$    
 
$\Gamma_{55}$ ${{\mathit \eta}_{{c}}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(1.8\pm{0.7})\times 10^{-4}$ 1840
 
$\Gamma_{56}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \phi}}$   $(1.04\pm{0.04})\times 10^{-3}$ 1588
 
$\Gamma_{57}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \phi}}{{\mathit \phi}}$   $(1.20^{+0.14}_{-0.16})\times 10^{-5}$ 764
 
$\Gamma_{58}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{0}}$   $<1.2\times 10^{-3}$ CL=90% 1787
 
$\Gamma_{59}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \eta}}$   $(4.0\pm{0.7})\times 10^{-4}$ S=1.4  1733
 
$\Gamma_{60}$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}_S^0}$   $(1.92\pm{0.14})\times 10^{-5}$ 1743
 
$\Gamma_{61}$ ${{\mathit J / \psi}{(1S)}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$   $(4.1\pm{0.4})\times 10^{-5}$ 1637
 
$\Gamma_{62}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \eta}^{\,'}}$   $(3.3\pm{0.4})\times 10^{-4}$ 1612
 
$\Gamma_{63}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(2.02\pm{0.17})\times 10^{-4}$ S=1.7  1775
 
$\Gamma_{64}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{0}}{(500)}}$ , ${{\mathit f}_{{0}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $<4\times 10^{-6}$ CL=90%  
 
$\Gamma_{65}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \rho}}$ , ${{\mathit \rho}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $<3.4\times 10^{-6}$ CL=90%  
 
$\Gamma_{66}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{0}}{(980)}}$ , ${{\mathit f}_{{0}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(1.24\pm{0.15})\times 10^{-4}$ S=2.1   
 
$\Gamma_{67}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}{(1270)}}$ , ${{\mathit f}_{{2}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(1.0\pm{0.4})\times 10^{-6}$  
 
$\Gamma_{68}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}{(1270)}}$ $_{0}$ , ${{\mathit f}_{{2}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(7.3\pm{1.7})\times 10^{-7}$  
 
$\Gamma_{69}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}{(1270)}}$ $_{\parallel}$ , ${{\mathit f}_{{2}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(1.05\pm{0.33})\times 10^{-6}$  
 
$\Gamma_{70}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}{(1270)}}$ $_{\perp}$ , ${{\mathit f}_{{2}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(1.3\pm{0.7})\times 10^{-6}$  
 
$\Gamma_{71}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{0}}{(1370)}}$ , ${{\mathit f}_{{0}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(4.4^{+0.6}_{-4.0})\times 10^{-5}$  
 
$\Gamma_{72}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{0}}{(1500)}}$ , ${{\mathit f}_{{0}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(2.04^{+0.32}_{-0.24})\times 10^{-5}$  
 
$\Gamma_{73}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}^{\,'}{(1525)}}$ $_{0}$ , ${{\mathit f}_{{2}}^{\,'}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(1.03\pm{0.22})\times 10^{-6}$  
 
$\Gamma_{74}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}^{\,'}{(1525)}}$ $_{\parallel}$ , ${{\mathit f}_{{2}}^{\,'}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(1.2^{+2.6}_{-0.8})\times 10^{-7}$  
 
$\Gamma_{75}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}^{\,'}{(1525)}}$ $_{\perp}$ , ${{\mathit f}_{{2}}^{\,'}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(5\pm{4})\times 10^{-7}$  
 
$\Gamma_{76}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{0}}{(1790)}}$ , ${{\mathit f}_{{0}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(4.9^{+10.0}_{-1.0})\times 10^{-6}$  
 
$\Gamma_{77}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ (nonresonant)   $(1.74^{+1.10}_{-0.34})\times 10^{-5}$ 1775
 
$\Gamma_{78}$ ${{\mathit J / \psi}{(1S)}}{{\overline{\mathit K}}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $<4.4\times 10^{-5}$ CL=90% 1675
 
$\Gamma_{79}$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{+}}{{\mathit K}^{-}}$   $(7.9\pm{0.7})\times 10^{-4}$ 1601
 
$\Gamma_{80}$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ + c.c.   $(9.5\pm{1.3})\times 10^{-4}$ 1538
 
$\Gamma_{81}$ ${{\mathit J / \psi}{(1S)}}{{\overline{\mathit K}}^{0}}{{\mathit K}^{+}}{{\mathit K}^{-}}$   $<1.2\times 10^{-5}$ CL=90% 1333
 
$\Gamma_{82}$ ${{\mathit J / \psi}}{{\mathit K}^{*}{(892)}^{0}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$   $(1.10\pm{0.09})\times 10^{-4}$ 1083
 
$\Gamma_{83}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{2}}^{\,'}{(1525)}}$   $(2.6\pm{0.6})\times 10^{-4}$ 1310
 
$\Gamma_{84}$ ${{\mathit J / \psi}{(1S)}}{{\mathit p}}{{\overline{\mathit p}}}$   $(3.6\pm{0.4})\times 10^{-6}$ 982
 
$\Gamma_{85}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \gamma}}$   $<7.3\times 10^{-6}$ CL=90% 1790
 
$\Gamma_{86}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(7.5\pm{0.8})\times 10^{-5}$ 1731
 
$\Gamma_{87}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{1}}{(1285)}}$   $(7.2\pm{1.4})\times 10^{-5}$ 1460
 
$\Gamma_{88}$ ${{\mathit \psi}{(2S)}}{{\mathit \eta}}$   $(3.3\pm{0.9})\times 10^{-4}$ 1338
 
$\Gamma_{89}$ ${{\mathit \psi}{(2S)}}{{\mathit \eta}^{\,'}}$   $(1.29\pm{0.35})\times 10^{-4}$ 1158
 
$\Gamma_{90}$ ${{\mathit \psi}{(2S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(6.9\pm{1.2})\times 10^{-5}$ 1397
 
$\Gamma_{91}$ ${{\mathit \psi}{(2S)}}{{\mathit \phi}}$   $(5.2\pm{0.4})\times 10^{-4}$ 1120
 
$\Gamma_{92}$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$   $(3.1\pm{0.4})\times 10^{-5}$ 1310
 
$\Gamma_{93}$ ${{\mathit \psi}{(2S)}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$   $(3.3\pm{0.5})\times 10^{-5}$ 1196
 
$\Gamma_{94}$ ${{\mathit \chi}_{{c1}}}{{\mathit \phi}}$   $(1.97\pm{0.25})\times 10^{-4}$ 1274
 
$\Gamma_{95}$ ${{\mathit \chi}_{{c1}}}{{\mathit K}^{+}}{{\mathit K}^{-}}$   1292
 
$\Gamma_{96}$ ${{\mathit \chi}_{{c2}}}{{\mathit K}^{+}}{{\mathit K}^{-}}$   1254
 
$\Gamma_{97}$ ${{\mathit \chi}_{{c1}}{(3872)}}{{\mathit \phi}}$   $(1.1\pm{0.4})\times 10^{-4}$ 936
 
$\Gamma_{98}$ ${{\mathit \chi}_{{c1}}{(3872)}}$( ${{\mathit K}^{+}}{{\mathit K}^{-}}$) $_{non-{{\mathit \phi}}}$   $(8.6\pm{3.5})\times 10^{-5}$ 961
 
$\Gamma_{99}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(7.0\pm{1.0})\times 10^{-7}$ 2680
 
$\Gamma_{100}$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$   $<2.1\times 10^{-4}$ CL=90% 2680
 
$\Gamma_{101}$ ${{\mathit \eta}}{{\mathit \pi}^{0}}$   $<1.0\times 10^{-3}$ CL=90% 2654
 
$\Gamma_{102}$ ${{\mathit \eta}}{{\mathit \eta}}$   $<1.43\times 10^{-4}$ CL=90% 2627
 
$\Gamma_{103}$ ${{\mathit \rho}^{0}}{{\mathit \rho}^{0}}$   $<3.20\times 10^{-4}$ CL=90% 2569
 
$\Gamma_{104}$ ${{\mathit \eta}^{\,'}}{{\mathit \eta}}$   $<6.5\times 10^{-5}$ CL=90% 2568
 
$\Gamma_{105}$ ${{\mathit \eta}^{\,'}}{{\mathit \eta}^{\,'}}$   $(3.3\pm{0.7})\times 10^{-5}$ 2507
 
$\Gamma_{106}$ ${{\mathit \eta}^{\,'}}{{\mathit \phi}}$   $<8.2\times 10^{-7}$ CL=90% 2495
 
$\Gamma_{107}$ ${{\mathit \phi}}{{\mathit f}_{{0}}{(980)}}$ , ${{\mathit f}_{{0}}{(980)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(1.12\pm{0.21})\times 10^{-6}$  
 
$\Gamma_{108}$ ${{\mathit \phi}}{{\mathit f}_{{2}}{(1270)}}$ , ${{\mathit f}_{{2}}{(1270)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(6.1^{+1.8}_{-1.5})\times 10^{-7}$  
 
$\Gamma_{109}$ ${{\mathit \phi}}{{\mathit \rho}^{0}}$   $(2.7\pm{0.8})\times 10^{-7}$ 2526
 
$\Gamma_{110}$ ${{\mathit \phi}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(3.5\pm{0.5})\times 10^{-6}$ 2579
 
$\Gamma_{111}$ ${{\mathit \phi}}{{\mathit \phi}}$   $(1.85\pm{0.14})\times 10^{-5}$ 2482
 
$\Gamma_{112}$ ${{\mathit \phi}}{{\mathit \phi}}{{\mathit \phi}}$   $(2.2\pm{0.6})\times 10^{-6}$ 2165
 
$\Gamma_{113}$ ${{\mathit \pi}^{+}}{{\mathit K}^{-}}$   $(5.8\pm{0.7})\times 10^{-6}$ 2659
 
$\Gamma_{114}$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$   $(2.66\pm{0.22})\times 10^{-5}$ 2638
 
$\Gamma_{115}$ ${{\mathit K}^{0}}{{\overline{\mathit K}}^{0}}$   $(1.76\pm{0.31})\times 10^{-5}$ 2637
 
$\Gamma_{116}$ ${{\mathit K}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(9.5\pm{2.1})\times 10^{-6}$ 2653
 
$\Gamma_{117}$ ${{\mathit K}^{0}}{{\mathit K}^{\pm}}{{\mathit \pi}^{\mp}}$   $(8.4\pm{0.9})\times 10^{-5}$ 2622
 
$\Gamma_{118}$ ${{\mathit K}^{*}{(892)}^{-}}{{\mathit \pi}^{+}}$   $(2.9\pm{1.1})\times 10^{-6}$ 2607
 
$\Gamma_{119}$ ${{\mathit K}^{*}{(892)}^{\pm}}{{\mathit K}^{\mp}}$   $(1.9\pm{0.5})\times 10^{-5}$ 2585
 
$\Gamma_{120}$ ${{\mathit K}_{{0}}^{*}{(1430)}^{\pm}}{{\mathit K}^{\mp}}$   $(3.1\pm{2.5})\times 10^{-5}$  
 
$\Gamma_{121}$ ${{\mathit K}_{{2}}^{*}{(1430)}^{\pm}}{{\mathit K}^{\mp}}$   $(1.0\pm{1.7})\times 10^{-5}$  
 
$\Gamma_{122}$ ${{\mathit K}^{*}{(892)}^{0}}{{\overline{\mathit K}}^{0}}$ + c.c.   $(2.0\pm{0.6})\times 10^{-5}$ 2585
 
$\Gamma_{123}$ ${{\mathit K}_{{0}}^{*}{(1430)}}{{\overline{\mathit K}}^{0}}$ + c.c.   $(3.3\pm{1.0})\times 10^{-5}$ 2468
 
$\Gamma_{124}$ ${{\mathit K}_{{2}}^{*}{(1430)}^{0}}{{\overline{\mathit K}}^{0}}$ + c.c.   $(1.7\pm{2.2})\times 10^{-5}$ 2467
 
$\Gamma_{125}$ ${{\mathit K}_S^0}$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}$ + c.c.   $(1.6\pm{0.4})\times 10^{-5}$ 2585
 
$\Gamma_{126}$ ${{\mathit K}^{0}}{{\mathit K}^{+}}{{\mathit K}^{-}}$   $(1.3\pm{0.6})\times 10^{-6}$ 2568
 
$\Gamma_{127}$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit \rho}^{0}}$   $<7.67\times 10^{-4}$ CL=90% 2550
 
$\Gamma_{128}$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit K}^{*}{(892)}^{0}}$   $(1.11\pm{0.27})\times 10^{-5}$ 2531
 
$\Gamma_{129}$ ${{\mathit K}^{*}{(892)}^{0}}{{\overline{\mathit K}}_{{2}}^{*}{(1430)}^{0}}$   2408
 
$\Gamma_{130}$ ${{\mathit K}_{{2}}^{*}{(1430)}^{0}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$   2408
 
$\Gamma_{131}$ ${{\mathit K}_{{2}}^{*}{(1430)}^{0}}{{\overline{\mathit K}}_{{2}}^{*}{(1430)}^{0}}$   2272
 
$\Gamma_{132}$ ${{\mathit \phi}}{{\mathit K}^{*}{(892)}^{0}}$   $(1.14\pm{0.30})\times 10^{-6}$ 2507
 
$\Gamma_{133}$ ${{\mathit p}}{{\overline{\mathit p}}}$   $<1.5\times 10^{-8}$ CL=90% 2514
 
$\Gamma_{134}$ ${{\mathit p}}{{\overline{\mathit p}}}{{\mathit K}^{+}}{{\mathit K}^{-}}$   $(4.5\pm{0.5})\times 10^{-6}$ 2231
 
$\Gamma_{135}$ ${{\mathit p}}{{\overline{\mathit p}}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$   $(1.39\pm{0.26})\times 10^{-6}$ 2355
 
$\Gamma_{136}$ ${{\mathit p}}{{\overline{\mathit p}}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   $(4.3\pm{2.0})\times 10^{-7}$ 2454
 
$\Gamma_{137}$ ${{\mathit p}}{{\overline{\mathit \Lambda}}}{{\mathit K}^{-}}$ + c.c.   $(5.5\pm{1.0})\times 10^{-6}$ 2358
 
$\Gamma_{138}$ ${{\mathit \Lambda}_{{c}}^{-}}{{\mathit \Lambda}}{{\mathit \pi}^{+}}$   $(3.6\pm{1.6})\times 10^{-4}$ 1979
 
$\Gamma_{139}$ ${{\mathit \Lambda}_{{c}}^{-}}{{\mathit \Lambda}_{{c}}^{+}}$   $<8.0\times 10^{-5}$ CL=95% 1405
 
FOOTNOTES
Constrained Fit information