BOTTOM, STRANGE MESONS
($\mathit B$ = $\pm1$, $\mathit S$ = $\mp{}$1)
${{\mathit B}_{{{s}}}^{0}}$ = ${\mathit {\mathit s}}$ ${\mathit {\overline{\mathit b}}}$, ${{\overline{\mathit B}}_{{{s}}}^{0}}$ = ${\mathit {\overline{\mathit s}}}$ ${\mathit {\mathit b}}$,
similarly for ${{\mathit B}_{{{s}}}^{*}}$'s
INSPIRE   JSON PDGID:
S086

${{\mathit B}_{{{s}}}^{0}}$

$I(J^P)$ = $0(0^{-})$ 
$\mathit I$, $\mathit J$, ${}^{P}$ need confirmation. Quantum numbers shown are quark-model predictions.
Expand/Collapse All
${{\mathit B}_{{{s}}}^{0}}$ MASS $5366.91$ $\pm0.11$ MeV 
 
${\mathit m}_{{{\mathit B}_{{{s}}}^{0}}}-{\mathit m}_{{{\mathit B}}}$ $87.37$ $\pm0.12$ MeV 
 
${{\mathit B}_{{{s}}}^{0}}$ MEAN LIFE ($1.516$ $\pm0.006$) $ \times 10^{-12}$ s 
 
$\Gamma _{{{\mathit B}_{{{s}}}^{0}}}$ ($65.98$ $\pm0.25$) $ \times 10^{10}$ s${}^{-1}$ 
 
$\Delta \Gamma _{{{\mathit B}_{{{s}}}^{0}}}$ ($80$ $\pm5$) $ \times 10^{9}$ s${}^{-1}$ (S = 1.5)
 
$\Delta \Gamma _{{{\mathit B}_{{{s}}}^{0}}}/\Gamma _{{{\mathit B}_{{{s}}}^{0}}}$ $0.124$ $\pm0.007$  
 
${{\mathit B}_{{{sH}}}^{0}}$ MEAN LIFE ($1.616$ $\pm0.009$) $ \times 10^{-12}$ s 
 
${{\mathit B}_{{{sL}}}^{0}}$ MEAN LIFE ($1.427$ $\pm0.007$) $ \times 10^{-12}$ s 
 
${{\mathit B}_{{{s}}}^{0}}$ MEAN LIFE (Flavor specific) ($1.526$ $\pm0.015$) $ \times 10^{-12}$ s (S = 1.3)
 
▸  ${{\mathit B}_{{{s}}}^{0}}$ MEAN LIFE (partial)
▸  POLARIZATION IN ${{\mathit B}_{{{s}}}^{0}}$ DECAY
▸  ${{\mathit B}_{{{s}}}^{0}}-{{\overline{\mathit B}}_{{{s}}}^{0}}$ MIXING
▸  $\mathit CP$ VIOLATION PARAMETERS in ${{\mathit B}_{{{s}}}^{0}}$
▸  $\mathit CPT$ VIOLATION PARAMETERS
▸  PARTIAL BRANCHING FRACTIONS IN ${{\mathit B}_{{{s}}}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \ell}^{+}}{{\mathit \ell}^{-}}$
▸  PRODUCTION ASYMMETRIES
▸  ${{\mathit B}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit D}_{{{s}}}^{*-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ FORM FACTORS
These branching fractions all scale with B(${{\overline{\mathit b}}}$ $\rightarrow$ ${{\mathit B}_{{{s}}}^{0}}$).
The branching fraction B(${{\mathit B}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit D}_{{{s}}}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ anything) is not a pure measurement since the measured product branching fraction B(${{\overline{\mathit b}}}$ $\rightarrow$ ${{\mathit B}_{{{s}}}^{0}}$) ${\times }$ B(${{\mathit B}_{{{s}}}^{0}}$ $\rightarrow$ ${{\mathit D}_{{{s}}}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ anything) was used to determine B(${{\overline{\mathit b}}}$ $\rightarrow$ ${{\mathit B}_{{{s}}}^{0}}$), as described in the note on ``${{\mathit B}^{0}}-{{\overline{\mathit B}}^{0}}$ Mixing''
For inclusive branching fractions, $\mathit e.g.,$ ${{\mathit B}}$ $\rightarrow$ ${{\mathit D}^{\pm}}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.
Mode  
Fraction ($\Gamma_i$ / $\Gamma$) Scale Factor/
Conf. Level
P(MeV/c)  
$\Gamma_{1}$ ${{\mathit D}_{{{s}}}^{-}}$ anything ($62$ $\pm6$ ) $\%$  
 
$\Gamma_{2}$ ${{\mathit D}_{{{s}}}^{\pm}}$ anything ($92$ $\pm11$ ) $\%$  
 
$\Gamma_{3}$ ${{\mathit D}^{0}}$ / ${{\overline{\mathit D}}^{0}}$ anything ($38$ $\pm10$ ) $\%$  
 
$\Gamma_{4}$ ${{\mathit \ell}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}{{\mathit X}}$ ($9.6$ $\pm0.8$ ) $\%$  
 
$\Gamma_{5}$ ${{\mathit e}^{+}}{{\mathit \nu}}{{\mathit X}^{-}}$ ($9.1$ $\pm0.8$ ) $\%$  
 
$\Gamma_{6}$ ${{\mathit \mu}^{+}}{{\mathit \nu}}{{\mathit X}^{-}}$ ($10.2$ $\pm1.0$ ) $\%$  
 
$\Gamma_{7}$ ${{\mathit D}_{{{s}}}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ anything [1] ($8.1$ $\pm1.3$ ) $\%$  
 
$\Gamma_{8}$ ${{\mathit D}_{{{s}}}^{*-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ anything ($5.4$ $\pm1.1$ ) $\%$  
 
$\Gamma_{9}$ ${{\mathit D}_{{{s}}}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{{\mu}}}}$ ($2.29$ $\pm0.21$ ) $\%$ 2321
 
$\Gamma_{10}$ ${{\mathit D}_{{{s}}}^{*-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{{\mu}}}}$ ($5.2$ $\pm0.5$ ) $\%$ 2266
 
$\Gamma_{11}$ ${{\mathit D}_{{{s1}}}{(2536)}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{{\mu}}}}$ , ${{\mathit D}_{{{s1}}}^{-}}$ $\rightarrow$ ${{\mathit D}^{*-}}{{\mathit K}_S^0}$ ($2.7$ $\pm0.7$) $ \times 10^{-3}$  
 
$\Gamma_{12}$ ${{\mathit D}_{{{s1}}}{(2536)}^{-}}{{\mathit X}}{{\mathit \mu}^{+}}{{\mathit \nu}}$ , ${{\mathit D}_{{{s1}}}^{-}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{+}}$ ($4.4$ $\pm1.3$) $ \times 10^{-3}$  
 
$\Gamma_{13}$ ${{\mathit D}_{{{s2}}}{(2573)}^{-}}{{\mathit X}}{{\mathit \mu}^{+}}{{\mathit \nu}}$ , ${{\mathit D}_{{{s2}}}^{-}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{+}}$ ($2.7$ $\pm1.0$) $ \times 10^{-3}$  
 
$\Gamma_{14}$ ${{\mathit K}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{{\mu}}}}$ ($1.06$ $\pm0.09$) $ \times 10^{-4}$ 2660
 
$\Gamma_{15}$ ${{\mathit D}_{{{s}}}^{-}}{{\mathit \pi}^{+}}$ ($2.98$ $\pm0.14$) $ \times 10^{-3}$ 2320
 
$\Gamma_{16}$ ${{\mathit D}_{{{s}}}^{-}}{{\mathit \rho}^{+}}$ ($6.8$ $\pm1.4$) $ \times 10^{-3}$ 2249
 
$\Gamma_{17}$ ${{\mathit D}_{{{s}}}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($6.1$ $\pm1.0$) $ \times 10^{-3}$ 2301
 
$\Gamma_{18}$ ${{\mathit D}_{{{s1}}}{(2536)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{{s1}}}^{-}}$ $\rightarrow$ ${{\mathit D}_{{{s}}}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($2.4$ $\pm0.8$) $ \times 10^{-5}$  
 
$\Gamma_{19}$ ${{\mathit D}_{{{s}}}^{\mp}}{{\mathit K}^{\pm}}$ ($2.25$ $\pm0.12$) $ \times 10^{-4}$ 2293
 
$\Gamma_{20}$ ${{\mathit D}_{{{s1}}}{(2536)}^{\mp}}{{\mathit K}^{\pm}}$ , ${{\mathit D}_{{{s1}}}^{-}}$ $\rightarrow$ ${{\overline{\mathit D}}^{*}{(2007)}^{0}}{{\mathit K}^{-}}$ ($2.48$ $\pm0.28$) $ \times 10^{-5}$  
 
$\Gamma_{21}$ ${{\mathit D}_{{{s}}}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($3.2$ $\pm0.6$) $ \times 10^{-4}$ 2249
 
$\Gamma_{22}$ ${{\mathit D}_{{{s}}}^{+}}{{\mathit D}_{{{s}}}^{-}}$ ($4.5$ $\pm0.6$) $ \times 10^{-3}$ S=1.3  1824
 
$\Gamma_{23}$ ${{\mathit D}_{{{s}}}^{-}}{{\mathit D}^{+}}$ ($3.1$ $\pm0.5$) $ \times 10^{-4}$ 1875
 
$\Gamma_{24}$ ${{\mathit D}^{+}}{{\mathit D}^{-}}$ ($2.2$ $\pm0.6$) $ \times 10^{-4}$ 1925
 
$\Gamma_{25}$ ${{\mathit D}^{*+}}{{\mathit D}^{-}}$ 1853
 
$\Gamma_{26}$ ${{\mathit D}^{*-}}{{\mathit D}^{+}}$ 1853
 
$\Gamma_{27}$ ${{\mathit D}^{*+}}{{\mathit D}^{*-}}$ ($2.14$ $\pm0.32$) $ \times 10^{-4}$ 1778
 
$\Gamma_{28}$ ${{\mathit D}^{0}}{{\overline{\mathit D}}^{0}}$ ($1.9$ $\pm0.5$) $ \times 10^{-4}$ 1930
 
$\Gamma_{29}$ ${{\mathit D}_{{{s}}}^{*-}}{{\mathit \pi}^{+}}$ ($1.9^{+0.5}_{-0.4}$) $ \times 10^{-3}$ 2265
 
$\Gamma_{30}$ ${{\mathit D}_{{{s}}}^{*\mp}}{{\mathit K}^{\pm}}$ ($1.32^{+0.40}_{-0.32}$) $ \times 10^{-4}$  
 
$\Gamma_{31}$ ${{\mathit D}_{{{s}}}^{*-}}{{\mathit \rho}^{+}}$ ($9.5$ $\pm2.0$) $ \times 10^{-3}$ 2191
 
$\Gamma_{32}$ ${{\mathit D}_{{{s}}}^{*+}}{{\mathit D}_{{{s}}}^{-}}{+}$ ${{\mathit D}_{{{s}}}^{*-}}{{\mathit D}_{{{s}}}^{+}}$ ($1.51$ $\pm0.13$ ) $\%$ 1742
 
$\Gamma_{33}$ ${{\mathit D}_{{{s}}}^{*+}}{{\mathit D}_{{{s}}}^{*-}}$ ($1.58$ $\pm0.20$ ) $\%$ S=1.3  1655
 
$\Gamma_{34}$ ${{\mathit D}_{{{s}}}^{(*)+}}{{\mathit D}_{{{s}}}^{(*)-}}$ ($4.5$ $\pm1.4$ ) $\%$  
 
$\Gamma_{35}$ ${{\mathit D}^{*-}}{{\mathit D}_{{{s}}}^{+}}$ ($4.0$ $\pm0.7$) $ \times 10^{-4}$ 1801
 
$\Gamma_{36}$ ${{\overline{\mathit D}}^{*0}}{{\overline{\mathit K}}^{0}}$ ($2.8$ $\pm1.1$) $ \times 10^{-4}$ 2278
 
$\Gamma_{37}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}^{0}}$ ($4.3$ $\pm0.9$) $ \times 10^{-4}$ 2330
 
$\Gamma_{38}$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ ($1.04$ $\pm0.13$) $ \times 10^{-3}$ 2312
 
$\Gamma_{39}$ ${{\overline{\mathit D}}^{*}{(2007)}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ ($7.3$ $\pm2.6$) $ \times 10^{-4}$ 2259
 
$\Gamma_{40}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$ ($4.4$ $\pm0.6$) $ \times 10^{-4}$ 2264
 
$\Gamma_{41}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}^{*}{(1410)}}$ ($3.9$ $\pm3.5$) $ \times 10^{-4}$ 2117
 
$\Gamma_{42}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{{0}}}^{*}{(1430)}}$ ($3.0$ $\pm0.7$) $ \times 10^{-4}$ 2113
 
$\Gamma_{43}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{{2}}}^{*}{(1430)}}$ ($1.1$ $\pm0.4$) $ \times 10^{-4}$ 2112
 
$\Gamma_{44}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}^{*}{(1680)}}$ $<7.8$ $\times 10^{-5}$ CL=90% 1997
 
$\Gamma_{45}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{{0}}}^{*}{(1950)}}$ $<1.1$ $\times 10^{-4}$ CL=90% 1884
 
$\Gamma_{46}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{{3}}}^{*}{(1780)}}$ $<2.6$ $\times 10^{-5}$ CL=90% 1970
 
$\Gamma_{47}$ ${{\overline{\mathit D}}^{0}}{{\overline{\mathit K}}_{{{4}}}^{*}{(2045)}}$ $<3.1$ $\times 10^{-5}$ CL=90% 1835
 
$\Gamma_{48}$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ (non-resonant) ($2.1$ $\pm0.8$) $ \times 10^{-4}$ 2312
 
$\Gamma_{49}$ [ ${{\mathit K}^{+}}{{\mathit K}^{-}}$ ]$_{D}$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}$ ($4.4$ $\pm0.6$) $ \times 10^{-4}$  
 
$\Gamma_{50}$ [ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ]$_{D}$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}$ ($4.4$ $\pm0.6$) $ \times 10^{-4}$  
 
$\Gamma_{51}$ [ ${{\mathit \pi}^{+}}{{\mathit K}^{-}}$ ]$_{D}$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}$  
 
$\Gamma_{52}$ [ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ ]$_{D}$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}$  
 
$\Gamma_{53}$ [ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ]$_{D}$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}$ ($4.4$ $\pm0.6$) $ \times 10^{-4}$  
 
$\Gamma_{54}$ [ ${{\mathit \pi}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ]$_{D}$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}$  
 
$\Gamma_{55}$ [ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ]$_{D}$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}$  
 
$\Gamma_{56}$ ${{\mathit D}_{{{s2}}}^{*}{(2573)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{{s2}}}^{*}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}$ ($2.6$ $\pm0.4$) $ \times 10^{-4}$  
 
$\Gamma_{57}$ ${{\mathit D}_{{{s1}}}^{*}{(2700)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{{s1}}}^{*}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}$ ($1.6$ $\pm0.8$) $ \times 10^{-5}$  
 
$\Gamma_{58}$ ${{\mathit D}_{{{s1}}}^{*}{(2860)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{{s1}}}^{*}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}$ ($5$ $\pm4$) $ \times 10^{-5}$  
 
$\Gamma_{59}$ ${{\mathit D}_{{{s3}}}^{*}{(2860)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{{s3}}}^{*}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{-}}$ ($2.2$ $\pm0.6$) $ \times 10^{-5}$  
 
$\Gamma_{60}$ ${{\overline{\mathit D}}^{0}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($5.6$ $\pm0.9$) $ \times 10^{-5}$ 2243
 
$\Gamma_{61}$ ${{\overline{\mathit D}}^{0}}{{\mathit f}_{{{0}}}{(980)}}$ $<3.1$ $\times 10^{-6}$ CL=90% 2242
 
$\Gamma_{62}$ ${{\overline{\mathit D}}^{0}}{{\mathit \phi}}$ ($2.30$ $\pm0.25$) $ \times 10^{-5}$ 2235
 
$\Gamma_{63}$ ${{\overline{\mathit D}}^{*0}}{{\mathit \phi}}$ ($3.2$ $\pm0.4$) $ \times 10^{-5}$ 2178
 
$\Gamma_{64}$ ${{\mathit D}^{*\mp}}{{\mathit \pi}^{\pm}}$ $<6.1$ $\times 10^{-6}$ CL=90%  
 
$\Gamma_{65}$ ${{\mathit \eta}_{{{c}}}}{{\mathit \phi}}$ ($5.0$ $\pm0.9$) $ \times 10^{-4}$ 1663
 
$\Gamma_{66}$ ${{\mathit \eta}^{\,'}}{{\mathit X}}$ $_{{{\mathit s}} {{\overline{\mathit s}}}}$  
 
$\Gamma_{67}$ ${{\mathit \eta}_{{{c}}}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($1.8$ $\pm0.7$) $ \times 10^{-4}$ 1840
 
$\Gamma_{68}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \phi}}$ ($1.03$ $\pm0.04$) $ \times 10^{-3}$ 1588
 
$\Gamma_{69}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \phi}}{{\mathit \phi}}$ ($1.18^{+0.14}_{-0.16}$) $ \times 10^{-5}$ 764
 
$\Gamma_{70}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{0}}$ $<1.21$ $\times 10^{-5}$ CL=90% 1787
 
$\Gamma_{71}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \eta}}$ ($4.0$ $\pm0.7$) $ \times 10^{-4}$ S=1.4  1733
 
$\Gamma_{72}$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}_S^0}$ ($1.92$ $\pm0.14$) $ \times 10^{-5}$ 1743
 
$\Gamma_{73}$ ${{\mathit J / \psi}{(1S)}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$ ($4.1$ $\pm0.4$) $ \times 10^{-5}$ 1637
 
$\Gamma_{74}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \eta}^{\,'}}$ ($3.3$ $\pm0.4$) $ \times 10^{-4}$ 1612
 
$\Gamma_{75}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($2.02$ $\pm0.17$) $ \times 10^{-4}$ S=1.7  1775
 
$\Gamma_{76}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{{0}}}{(500)}}$ , ${{\mathit f}_{{{0}}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $<4$ $\times 10^{-6}$ CL=90%  
 
$\Gamma_{77}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \rho}}$ , ${{\mathit \rho}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $<3.4$ $\times 10^{-6}$ CL=90%  
 
$\Gamma_{78}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{{0}}}{(980)}}$ , ${{\mathit f}_{{{0}}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($1.24$ $\pm0.15$) $ \times 10^{-4}$ S=2.1   
 
$\Gamma_{79}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{{2}}}{(1270)}}$ , ${{\mathit f}_{{{2}}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($1.0$ $\pm0.4$) $ \times 10^{-6}$  
 
$\Gamma_{80}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{{2}}}{(1270)}}$ $_{0}$ , ${{\mathit f}_{{{2}}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($7.3$ $\pm1.7$) $ \times 10^{-7}$  
 
$\Gamma_{81}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{{2}}}{(1270)}}$ $_{\parallel}$ , ${{\mathit f}_{{{2}}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($1.05$ $\pm0.33$) $ \times 10^{-6}$  
 
$\Gamma_{82}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{{2}}}{(1270)}}$ $_{\perp}$ , ${{\mathit f}_{{{2}}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($1.3$ $\pm0.7$) $ \times 10^{-6}$  
 
$\Gamma_{83}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{{0}}}{(1370)}}$ , ${{\mathit f}_{{{0}}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($4.4^{+0.6}_{-4.0}$) $ \times 10^{-5}$  
 
$\Gamma_{84}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{{0}}}{(1500)}}$ , ${{\mathit f}_{{{0}}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($2.04^{+0.32}_{-0.24}$) $ \times 10^{-5}$  
 
$\Gamma_{85}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{{2}}}^{\,'}{(1525)}}$ $_{0}$ , ${{\mathit f}_{{{2}}}^{\,'}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($1.03$ $\pm0.22$) $ \times 10^{-6}$  
 
$\Gamma_{86}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{{2}}}^{\,'}{(1525)}}$ $_{\parallel}$ , ${{\mathit f}_{{{2}}}^{\,'}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($1.2^{+2.6}_{-0.8}$) $ \times 10^{-7}$  
 
$\Gamma_{87}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{{2}}}^{\,'}{(1525)}}$ $_{\perp}$ , ${{\mathit f}_{{{2}}}^{\,'}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($5$ $\pm4$) $ \times 10^{-7}$  
 
$\Gamma_{88}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{{0}}}{(1790)}}$ , ${{\mathit f}_{{{0}}}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($4.9^{+10.0}_{-1.0}$) $ \times 10^{-6}$  
 
$\Gamma_{89}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ (nonresonant) ($1.74^{+1.10}_{-0.34}$) $ \times 10^{-5}$ 1775
 
$\Gamma_{90}$ ${{\mathit J / \psi}{(1S)}}{{\overline{\mathit K}}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $<4.4$ $\times 10^{-5}$ CL=90% 1675
 
$\Gamma_{91}$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($7.9$ $\pm0.7$) $ \times 10^{-4}$ 1601
 
$\Gamma_{92}$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ + c.c. ($9.5$ $\pm1.3$) $ \times 10^{-4}$ 1538
 
$\Gamma_{93}$ ${{\mathit J / \psi}{(1S)}}{{\overline{\mathit K}}^{0}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ $<1.2$ $\times 10^{-5}$ CL=90% 1333
 
$\Gamma_{94}$ ${{\mathit J / \psi}}{{\mathit K}^{*}{(892)}^{0}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$ ($1.08$ $\pm0.09$) $ \times 10^{-4}$ 1083
 
$\Gamma_{95}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{{2}}}^{\,'}{(1525)}}$ ($2.6$ $\pm0.6$) $ \times 10^{-4}$ 1310
 
$\Gamma_{96}$ ${{\mathit J / \psi}{(1S)}}{{\mathit p}}{{\overline{\mathit p}}}$ ($3.6$ $\pm0.4$) $ \times 10^{-6}$ 982
 
$\Gamma_{97}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \gamma}}$ $<7.3$ $\times 10^{-6}$ CL=90% 1790
 
$\Gamma_{98}$ ${{\mathit J / \psi}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ , ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ $<2.6$ $\times 10^{-9}$ CL=95%  
 
$\Gamma_{99}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($7.5$ $\pm0.8$) $ \times 10^{-5}$ 1731
 
$\Gamma_{100}$ ${{\mathit J / \psi}{(1S)}}{{\mathit f}_{{{1}}}{(1285)}}$ ($7.2$ $\pm1.4$) $ \times 10^{-5}$ 1460
 
$\Gamma_{101}$ ${{\mathit J / \psi}{(1S)}}{{\overline{\mathit D}}^{0}}$ $<1.0$ $\times 10^{-6}$ CL=90% 996
 
$\Gamma_{102}$ ${{\mathit \psi}{(2S)}}{{\mathit \eta}}$ ($3.3$ $\pm0.9$) $ \times 10^{-4}$ 1338
 
$\Gamma_{103}$ ${{\mathit \psi}{(2S)}}{{\mathit \eta}^{\,'}}$ ($1.29$ $\pm0.35$) $ \times 10^{-4}$ 1158
 
$\Gamma_{104}$ ${{\mathit \psi}{(2S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($6.9$ $\pm1.2$) $ \times 10^{-5}$ 1397
 
$\Gamma_{105}$ ${{\mathit \psi}{(2S)}}{{\mathit \phi}}$ ($5.2$ $\pm0.4$) $ \times 10^{-4}$ 1120
 
$\Gamma_{106}$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{0}}$ ($1.9$ $\pm0.5$) $ \times 10^{-5}$ 1352
 
$\Gamma_{107}$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ ($3.1$ $\pm0.4$) $ \times 10^{-5}$ 1310
 
$\Gamma_{108}$ ${{\mathit \psi}{(2S)}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$ ($3.3$ $\pm0.5$) $ \times 10^{-5}$ 1196
 
$\Gamma_{109}$ ${{\mathit \chi}_{{{c1}}}}{{\mathit \phi}}$ ($1.95$ $\pm0.25$) $ \times 10^{-4}$ 1275
 
$\Gamma_{110}$ ${{\mathit \chi}_{{{c1}}}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ 1292
 
$\Gamma_{111}$ ${{\mathit \chi}_{{{c2}}}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ 1254
 
$\Gamma_{112}$ ${{\mathit \chi}_{{{c1}}}{(3872)}}{{\mathit \phi}}$ ($9.7$ $\pm3.3$) $ \times 10^{-5}$ 936
 
$\Gamma_{113}$ ${{\mathit \chi}_{{{c1}}}{(3872)}}$( ${{\mathit K}^{+}}{{\mathit K}^{-}}$) $_{non-{{\mathit \phi}}}$ ($7.6$ $\pm3.0$) $ \times 10^{-5}$ 961
 
$\Gamma_{114}$ ${{\mathit \chi}_{{{c1}}}{(3872)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($3.7$ $\pm1.5$) $ \times 10^{-5}$ 1264
 
$\Gamma_{115}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($7.2$ $\pm1.0$) $ \times 10^{-7}$ 2680
 
$\Gamma_{116}$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$ $<7.7$ $\times 10^{-6}$ CL=90% 2680
 
$\Gamma_{117}$ ${{\mathit \eta}}{{\mathit \pi}^{0}}$ $<1.0$ $\times 10^{-3}$ CL=90% 2654
 
$\Gamma_{118}$ ${{\mathit \eta}}{{\mathit \eta}}$ $<1.43$ $\times 10^{-4}$ CL=90% 2627
 
$\Gamma_{119}$ ${{\mathit \rho}^{0}}{{\mathit \rho}^{0}}$ $<3.20$ $\times 10^{-4}$ CL=90% 2569
 
$\Gamma_{120}$ ${{\mathit \eta}^{\,'}}{{\mathit K}_S^0}$ $<8.16$ $\times 10^{-6}$ CL=90% 2573
 
$\Gamma_{121}$ ${{\mathit \eta}^{\,'}}{{\mathit \eta}}$ $<6.5$ $\times 10^{-5}$ CL=90% 2568
 
$\Gamma_{122}$ ${{\mathit \eta}^{\,'}}{{\mathit \eta}^{\,'}}$ ($3.3$ $\pm0.7$) $ \times 10^{-5}$ 2507
 
$\Gamma_{123}$ ${{\mathit \eta}^{\,'}}{{\mathit \phi}}$ $<8.2$ $\times 10^{-7}$ CL=90% 2495
 
$\Gamma_{124}$ ${{\mathit \phi}}{{\mathit f}_{{{0}}}{(980)}}$ , ${{\mathit f}_{{{0}}}{(980)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($1.12$ $\pm0.21$) $ \times 10^{-6}$  
 
$\Gamma_{125}$ ${{\mathit \phi}}{{\mathit f}_{{{2}}}{(1270)}}$ , ${{\mathit f}_{{{2}}}{(1270)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($6.1^{+1.8}_{-1.5}$) $ \times 10^{-7}$  
 
$\Gamma_{126}$ ${{\mathit \phi}}{{\mathit \rho}^{0}}$ ($2.7$ $\pm0.8$) $ \times 10^{-7}$ 2526
 
$\Gamma_{127}$ ${{\mathit \phi}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($3.5$ $\pm0.5$) $ \times 10^{-6}$ 2579
 
$\Gamma_{128}$ ${{\mathit \phi}}{{\mathit \phi}}$ ($1.84$ $\pm0.14$) $ \times 10^{-5}$ 2482
 
$\Gamma_{129}$ ${{\mathit \phi}}{{\mathit \phi}}{{\mathit \phi}}$ ($2.2$ $\pm0.6$) $ \times 10^{-6}$ 2165
 
$\Gamma_{130}$ ${{\mathit \pi}^{+}}{{\mathit K}^{-}}$ ($5.9$ $\pm0.7$) $ \times 10^{-6}$ 2659
 
$\Gamma_{131}$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$ ($2.72$ $\pm0.23$) $ \times 10^{-5}$ 2638
 
$\Gamma_{132}$ ${{\mathit K}^{0}}{{\overline{\mathit K}}^{0}}$ ($1.76$ $\pm0.31$) $ \times 10^{-5}$ 2637
 
$\Gamma_{133}$ ${{\mathit K}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($9.5$ $\pm2.1$) $ \times 10^{-6}$ 2653
 
$\Gamma_{134}$ ${{\mathit K}^{0}}{{\mathit K}^{\pm}}{{\mathit \pi}^{\mp}}$ ($8.4$ $\pm0.9$) $ \times 10^{-5}$ 2622
 
$\Gamma_{135}$ ${{\mathit K}^{*}{(892)}^{-}}{{\mathit \pi}^{+}}$ ($2.9$ $\pm1.1$) $ \times 10^{-6}$ 2607
 
$\Gamma_{136}$ ${{\mathit K}^{*}{(892)}^{\pm}}{{\mathit K}^{\mp}}$ ($1.9$ $\pm0.5$) $ \times 10^{-5}$ 2585
 
$\Gamma_{137}$ ${{\mathit K}_{{{0}}}^{*}{(1430)}^{\pm}}{{\mathit K}^{\mp}}$ ($3.1$ $\pm2.5$) $ \times 10^{-5}$  
 
$\Gamma_{138}$ ${{\mathit K}_{{{2}}}^{*}{(1430)}^{\pm}}{{\mathit K}^{\mp}}$ ($1.0$ $\pm1.7$) $ \times 10^{-5}$  
 
$\Gamma_{139}$ ${{\mathit K}^{*}{(892)}^{0}}{{\overline{\mathit K}}^{0}}$ + c.c. ($2.0$ $\pm0.6$) $ \times 10^{-5}$ 2585
 
$\Gamma_{140}$ ${{\mathit K}_{{{0}}}^{*}{(1430)}}{{\overline{\mathit K}}^{0}}$ + c.c. ($3.3$ $\pm1.0$) $ \times 10^{-5}$ 2468
 
$\Gamma_{141}$ ${{\mathit K}_{{{2}}}^{*}{(1430)}^{0}}{{\overline{\mathit K}}^{0}}$ + c.c. ($1.7$ $\pm2.2$) $ \times 10^{-5}$ 2467
 
$\Gamma_{142}$ ${{\mathit K}_S^0}$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}$ + c.c. ($1.6$ $\pm0.4$) $ \times 10^{-5}$ 2585
 
$\Gamma_{143}$ ${{\mathit K}^{0}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($1.3$ $\pm0.6$) $ \times 10^{-6}$ 2568
 
$\Gamma_{144}$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit \rho}^{0}}$ $<7.67$ $\times 10^{-4}$ CL=90% 2550
 
$\Gamma_{145}$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit K}^{*}{(892)}^{0}}$ ($1.11$ $\pm0.27$) $ \times 10^{-5}$ 2531
 
$\Gamma_{146}$ ${{\mathit K}^{*}{(892)}^{0}}{{\overline{\mathit K}}_{{{2}}}^{*}{(1430)}^{0}}$ 2408
 
$\Gamma_{147}$ ${{\mathit K}_{{{2}}}^{*}{(1430)}^{0}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$ 2408
 
$\Gamma_{148}$ ${{\mathit K}_{{{2}}}^{*}{(1430)}^{0}}{{\overline{\mathit K}}_{{{2}}}^{*}{(1430)}^{0}}$ 2272
 
$\Gamma_{149}$ ${{\mathit \phi}}{{\mathit K}^{*}{(892)}^{0}}$ ($1.14$ $\pm0.30$) $ \times 10^{-6}$ 2507
 
$\Gamma_{150}$ ${{\mathit p}}{{\overline{\mathit p}}}$ $<4.4$ $\times 10^{-9}$ CL=90% 2514
 
$\Gamma_{151}$ ${{\mathit p}}{{\overline{\mathit p}}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($4.5$ $\pm0.5$) $ \times 10^{-6}$ 2231
 
$\Gamma_{152}$ ${{\mathit p}}{{\overline{\mathit p}}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ ($1.39$ $\pm0.26$) $ \times 10^{-6}$ 2355
 
$\Gamma_{153}$ ${{\mathit p}}{{\overline{\mathit p}}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($4.3$ $\pm2.0$) $ \times 10^{-7}$ 2454
 
$\Gamma_{154}$ ${{\mathit p}}{{\overline{\mathit p}}}{{\mathit p}}{{\overline{\mathit p}}}$ ($2.3$ $\pm1.0$) $ \times 10^{-8}$ 1797
 
$\Gamma_{155}$ ${{\mathit p}}{{\overline{\mathit \Lambda}}}{{\mathit K}^{-}}$ + c.c. ($5.5$ $\pm1.0$) $ \times 10^{-6}$ 2358
 
$\Gamma_{156}$ ${{\mathit \Lambda}_{{{c}}}^{-}}{{\mathit \Lambda}}{{\mathit \pi}^{+}}$ ($3.6$ $\pm1.6$) $ \times 10^{-4}$ 1979
 
$\Gamma_{157}$ ${{\mathit \Lambda}_{{{c}}}^{-}}{{\mathit \Lambda}_{{{c}}}^{+}}$ $<8.0$ $\times 10^{-5}$ CL=95% 1405
 
▸  Lepton family ($\mathit LF$), lepton ($\mathit L$), baryon ($\mathit B$) number violating modes or $\Delta \mathit B$ = 1 weak neutral current ($\mathit B1$) modes
[1] Not a pure measurement. See note at head of ${{\mathit B}_{{{s}}}^{0}}$ Decay Modes.
[2] Here ${{\mathit S}}$ and ${{\mathit P}}$ are the hypothetical scalar and pseudoscalar particles with masses of 2.5 GeV/c${}^{2}$ and 214.3 MeV/c${}^{2}$, respectively.
[3] The value is for the sum of the charge states or particle/antiparticle states indicated.
Constrained Fit information